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1.0 INTRODUCTION AND SUMMARY

This report presents the theory and describes the overation of

a computer program designed to predict uncertainty in structural
modal characteristics based on uncertainty in structural physical
properties. The program, entitled VIDAP (Vibrational Data
Accuracy Program), can handle both stiffness and mass uncertainty
and can work with an arbitrary stiffness matrix or one which
involves beam or plate elements. The program and the supporting
theory have the following features:

@ a linear statistical model which can accurately
predict uncertainties of selected frequencies and
modes based on the uncertainty in properties of in-
dividual elements.

® the program never handles matrices of dimension
larger than the total degrees of freedom of the
system. The program can handle problems of up
to 300 degrees of freedom.

® the computation speed of the program is less than
that required for computation of eigenvectors and
eigenvalues.

® tl.e program stands alone from any structural dynamics
program, requiring only the eigenvalues and eigen-
vectors, the mass and stiffness matrices, and certain
element properties as input.

e the input procedure is cf such a form that the user
need not have any knowledge of statistics in order
to get an acceptable answer.

Included with the description of the program and theory are two
examples which demonstrate the operation. The results from

the two examples, a four degree-of-freedom longitudinal rod

and an S II longitudinal vibration model, are compared with
Monte Carlo or other independent solutions to confirm the
accuracy of the VIDAP solution. Conclusions from these examples
are:

® The VIDAP theory is substantiated by excellent correl-
ation of results from the four degree-of-freedom system,

® The VIDAP program can compute eigenvalue statistics
very accurately in any size model but has difficulty
with the accurate prediction of the eigenvector statistics
in large models. The difficulties apparently lie with



roundoff or nonlinearity of the eigenvector components
used in the development of the partial derivatives.
The difficulties may be attributable to the particular
test problem but may exist in many other untried pro-
blems as well. One of the recommendations of the
study is to perform further work on the influence of
ill conditioning and roundoff upon the eigenvector
statistics.

A user's manual is included in Appendix B. This appendix, sup-
ported by the theoretical development should make the report
self-contained in providing adequate information for the opera-
tion of VIDAP.




2.0 PROCEDURE

2.1 Statistical Background

Before developing the model for computing the frequency and
modal statistics, it is advisable to review the statistical
concepts which are used throughout. A simple linear relation-
ship between the vector {x} and vector {y} is presented in
Equation (2-1}).

% a1 4 || Yy

0" o1 %22 F23l{ Y, (2-1)
X4 31 F32 B35\ Y,

{x} = [a] {y}

If the components of {y} are random, then x,, x,, and X, are
random as well. To compute the variances of x,, X, and x, it
is necessary to perform a matrix manipulation with [A] and a
covariance matrix of {y} which is described in Equation (2-2).

2
oy, 9y, %y,
y covariance matrix = [Iy] = oy,Y, 02y2 Oy,v, (2-2)

2
oy,vy, %.,y, 9 Y,

The diagonal elements of the y covariance matrix, [Zy], are

the standard deviations squared (the variances) of each of the
components of {y}. The off-diagonal elements of the covariance
matrix show how y, and y,, for instance, are statistically
correlated. If we assume that each of the components of {y}
are statistically independent, then [Iy] becomes a diagonal
matrix with off-diagonal elements equal to zero. However,




statistical independence of the elements of {y! does not
necessarily mean statistical independence of the elements of

{x}.

The covariance matrix for the components of {x} is now
written as a function of [A] and [Zy] as shown in Equation (2-3).

[2x] = [2a] [5,] [A] (2-3)

The x covariance matrix [Z_] now has variances of the compon-
ents of {x} along the diagOnal and covariances of the compon-
ents off the diagonal. To compute the correlation coefficients
use the formula

Py = —_— (2-4)

where p,, is the correlation coefficient for elements X, and
. . p
X,, Oyx x 1S the covariance (from [Iy]) and OXI and 9, “are

. . 2
the sténéard deviations.
The presentation above is, in essence, most of the statistical

background necessary for the development of the covariance
matrix for frequencies and modes.

2.2 Considerations in the Dynamic Model

Before developing the statistical model, let us review the
general steps* involved in developing system stiffness and
mass matrices. Consider as an example the truss on the next

page.

* These steps are shown to clarify steps which will be used
in the statistical development and need not represent any
particular structural dynamics program.




Considerations in the Dynamic Model (Cont'd)

[
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Beam Element i

3

Figure 1. Truss Example

The truss is made up of seven elements. We will use Beam
Element i as our example. When entering data into the pro-
gram the user will identify that points 1 and 2 of the struc-
ture are connected by a beam with a possible twelve degrees
of freedom (six at each end). The program has built

into it a stiffness matrix format for a beam, so that when
physical properties (E, I, A, L, etc.) are provided, the pro-
gram will develop a stiffness matrix and a mass matrix for the
beam in its own local coordinate system. To make these two
matrices compatible with the global coordinate system,

they are pre and post-multiplied by a rotation matrix whose
elements are based on the orientation of Beam Element i rela-
tive to the global coordinates. The equation is shown below
where [(1)K]* is thﬁ,?tiffness matrix for beam element i in
local coordinates, ['!’R] is the rotation matrix, and [‘}/K_]
is the stiffness matrix in global coordinates.

[Wky) = [(@r] [Bx] (Bgr] (2-5)

At this point, the procedure used for Beam Element i is applied
to every other element of the truss until seven independent
pairs of stiffness and mass matrices have been constructed.

The stiffness matrix [(;)Kr] is associated with two nodes (1
and 2) in the global coordinate system. This is demonstrated
on the next page.

* The pre-superscript (1) genotes association with the ith
component in the structure. This nomenclature will is used
throughout the report.




[(i)Kr] _ ':[ (1)g.21 1(1)q, (2-6)

(13227 1) o] ]
[(1)2-1] [<i)2“21J

where the matrices identified by hyphenated terms represent
6X6 stiffness matrices related to the nodes ( ﬂl 1-1} and

1)2-2]) or to the coupling between nodes ([ {*)1-2] and
[(B)a-1]).

There is more than one way to develop the system stiffness
matrix, but the method used here is based on the development
of the nodal stiffness. Hence, to begin,a matrix is defined
which is partitioned according to the nodes. No coordinates
are deleted because of constraints.

Nide lNgde lNgde l
r11—1}j1—215{1-3] . Eg d.o.f. Node 1

[K] yngeletea —|12-11 [2-2] (2-3] - Node 2 (2-7)
[3-1] [3-2) [3-3] - Node 3

The matrix [1-1] is the sum of the [(l)l—l] nodal stiffness
matrices identified in the stiffnesi.Tatrices for the components,
i.e. identified from partitioning ['! K.].

The following two steps are used to obtain the stiffness matrix
for the constrained system; (1) identify the constraints for

each node, (2) remove the columns and rows of the undeleted [K]
corresponding to the constraints in the nodes. [K] is now reduced
to the size corresponding to the number of dynamic degrees of
freedom and is ready for eigenvalue/vector computation.

The path from element properties to system stiffness has now

been completed. It is this path that is used in developing
the linear statistical model.

2.3 The Statistical Development

The development of the linear statistical package is based on
the assumption that a small perturbation of a structural
element property causes small perturbations in the natural
frequencies of the system and that the relationships are lin-
ear for the range of the variations considered. The equation
for one frequency and one property can be expressed most simply

2-4




2.3 The Statistical Development (Cont'd)
as 3
dw = Y ap (2-8)
op

where w is a single frequency and p is some property of some
element in the system. The term, ow/dp, is composed of all of
the modifications to p which take place when tracing through
the system from the property, through the elemental stiffness
matrix, through a rotation, through a compatibility matrix and
finally through the eigenvalue computation. We can show this
symbolically in a series of partial derivatives

The effect of rotating
from local to global
coordinates

The dependence of the
component stiffness
matrix on the property p

do = (2% L oKy % Yap. (2-9)
3 dkgyst 3k 3p
/

The dependence of an

eigenvalue upon the

variation of an ele-

ment in the stiffness
matrix

The first two partial derivatives were developed in Reference

(1). They are
dw; 1
S (2-10)
dA4 2/7\—i
and
Bhi xpixqi (2-11)
0kpg {x; M) {x;}
where kpq igs the pqth element in the system stiffness gatrix,
£

and Xpi and X5; are the pth and qth elements in the i eigen-

g
vector.




Similar expressions were derived for di

Impg  Okpg Mg

although the expressions concerning the eigenvector components
are rederived in a more convenient form in Section 3 of this

report.

Bin, and Bin

Of the partial derivative expressions shown in (2-9), all but
the first are matrices or vectors rather than scalars; and if
the number of frequencies and elemental properties are in-
creased and if modes are considered, all become nonscalar
(i.e. matrix) expressions. At this point, we will attempt to
define each of these expressions more exactly starting with
the physical properties and working to the system stiffness
matrix.

Using a beam element such as that discussed in Section 2.2,
develop a vector of the physical properties. These properties
would normally be included in the program input data.

(2-12)

—_—
o]

—

I
< P HMH

By perturbing each of the properties, linear expressions can

be written for relating the components of the elemental stiff-
ness matrix to the properties. The expressions can be put into
the following matrix form:

((i)
: T (1) (i)
g(l)dk% _ dk - 8 (k) ; dp% (2-13)
< 12 a(p)
a

13

It is, however, more convenient to keep the partial derivatives,
akij , in a matrix form until the stiffness elements have been

Iy,
rotated into system or global coordinates. Hence the stiffness

matrix is differentiated n times, once for each property which can
vary. There are now n matrices of partial derivatives as shown

2-6




below containing all the s
elements to the properties

9p, ’ Ip, ’ ' 0Py

To put these partial derivatives into system coordinates
pre and post multiply these matrices by the rotation matrix

[ (1)R] for element i.

_ﬁja(k)r] _ Ei)k‘ (1) 5(x) | [“JR]'

L Spl - i apl il
Wi)a(k)r] _ [@IR] [E) 5k ] [“JR]' (2-14)
i 3p2 - - i sz i
(1) 3 (k)
The elements of §—-r , etc. can now be removed and
Pi

placed into columns with each column representing a dependency
upon a different property, p.

[ -1
3k ok 3k
11]:‘ llr llr o .
P 3
apl P, P,
3k 3k ok
12r 12r 12r L. .
3p1 ap2 9P,
@ e ) = 3%k ok ok
a(p) 13r 13r 13r o (2"15)
3
apl sz P,




(i) 4
Note that (k)r is a matrix of n columns representing the

9
p)
n properties and m rows representing the m elements in

[(i) }
k_|.
r

This matrix (Equation (2-15)) encompasses two of_the partial de-

rivatives shown in Equation (2-9), akr and |9k |,
8k _ °p
: (i) (
The components of the matrix 9(k) ] can be predeveloped with-
3 (p)

in the computer program because they are based on the same fixed
expressions used to develop the stiffness matrix.

This generally covers the development of partial derivatives re-
lating changes in physical properties to changes in modal charac-
teristics. One additional point is worth mentioning, however.

In developing the partial derivatives axi and iji, note that not

Ikpg 9kpq
all of the partial derivatives are required; only those with re-
spect to system stiffness elements k,, which correspond to elements

(l)krs in the rotated elemental stiffness matrix. Hence, logic

must be introduced into the program to compute only those partial
derivatives which relate to structural element i. We can denote
this consideration for element i by introducing the presuperscript
(i) into the matrix expression [B(A) ]_

a(ksyst)
The expression in Equation (2 -9) can be written as a product of

a series of matrices (it is convenient to work with d)\ rather
than dw; results can be put in terms of w in the final operation).

e 7 : N . *
3(1) f RS Yo | ()
a | = - dp (2-16)
a(ksyst)J 3 (p) |
and
(i) | Mo Do | (1)
dxé = u 3 4 g (2-17)
Ylksyse) || T00) P

* The development here is for stiffness uncertainty alone. The
method is the same for mass, and mass uncertainty is included
in the VIDAP program. See Sections 4 and 5 for further
details. 2-8




For convenience, rewrite as

(i)

ax é = [B]]c] 3(i)dp% (2-18)

(i)
dx

(2-19)

[p][c] g(i)dp$

Thus, we have complete linear expressions showing the dependence
of the eigenvalues and modes upon the physical properties of
Beam Element i. Now, using Equation (2-3), write directly the
covariance matrices for the eigenvalues and the eigenvectors.

(i (1 X

{ T [BHCI[ )ZJP][C]'[B]' (2-20)
(4 (i |

[”& [DHCI[ ip][cl'ial' (2-21)

If more than one element in the structure has random properties,
the process to produce [(l)ZA] and [(1)3,] can be repeated and
the results combined to form the final covariance matrices for
the eigenvalues and eigenvectors. Incidently, it is this re-
versal of the combination procedure and the assumption of sta-
tistical independence from structural element to structural
element that permits the use of much smaller matrices compared
to the method presented in Reference 1.

o

If the user is interested in a point on the structure between
nodes, an additional computational procedure must be added to
properly account for the variances and covariances of the modes.

2.4 Implementation of the Statistical Model

All the partial derivative expressions presented in (2-16) and
(2-17) are developed within the computer program since they are
based on properties or expressions already being considered in
the development of the stiffness and mass matrix. The program
requires only the system mass and stiffness matrices, the eigen-
values and eigenvectors, details of the elements with random
properties, statistics of the properties, and constraints.

The second aspect of the problem is the size of the matrices

involved and t?e kinds of manipulation. The procedure required

to obtain 9.(X) always requires the inversion (or simultaneous
9 (k,m)




equation solution) of (n-1l)x(n-1) matrices making this the most
expensive part of the statistical computations. The other
processes are primarily the development of elements by simple
formulae or the multiplication of matrices, both of which are
congiderably cheaper than inversion. Every effort has been made
to minimize the matrix storage reqguirements by using only half

of the symmetric matrices and storing in a new matrix having the
number of columns corresponding to the semi-bandwidth and the
number of rows corresponding to the degrees of freedom. The
simultaneous equation solution for axji (to be shown in Section 3)

ok
pPq
is accomplished, in part, by triangular decomposition of the
matrix expression [K-\;M]. This is the fastest and most accurate

method available and requires the least storage.

The output of the statistical data can be quite voluminous. For
instance, in displaying the statistical parameters for all 100
eigenvectors of a 100 degree-of-freedom system, the covariance
matrix has the dimensions of 10,000 x 10,000. Since the user
will never have need for all of this data, he can confine the
output to the specific eigenvectors and sections of the eigen-
vectors which are of interest.




5.0  EIGENVALUE AND EIGENVECTOR PARTIAL DERIVATIVES

&

3.1 Eigenvalue Partial Derivatives

The eigenvalue equation to be treated is
Kxy = XiMXi (3-1)

where K and M are symmetric stiffness and mass matrices,

x; is a column vector of displacements (the ith eigenvector)
and X; is a scalar (the ith eigenvalue). Considering each
term to be a variable, differentiate and premultiply by the

transpose Xy to obtain

J

] 1)
3 J

j(K - AiM)dXi = dAiX

Mx; - x dei + Aixédei (3-2)

Since x;K = ij;M, Equation (3-2) reduces to

] 1) 1 1 ]
(Aj - Ai)ijdxi = dAinMxi - deKXi + Aixdexi (3-3)

When j = i, the left side of Equation (3-3) is zero and
we obtain

1
AKX . x5 AMX
dr, = ——:—:'——-—-J-: R (3-4)

l ]
XiMxi XiMxi

1]
The product x;dKx; is scalar and can be expressed in terms
of a double summation

]
Xidei = Xridkrsxsi (3-5)

R
i 5
N
0 5
]

1

where xy; and xgi are the rth and sth elements of the eigen-

vector x; and dkrs is the rs element in the matrix dkK.




Substituting Eq. (3-~5) and a similar expression for xédei
into Bg. (3-4), we find

n n X, 4 ¥
si
oy = L L s oag,
r=1 s=1 X
(3-6)
n n X
r
_ Z Z Xl si dm.
r=1 s=l

Equation (3-6) is equivalent to a chain of partial derivatives

n n 3xi n n 9,
ar, = Z Z dk,.o + Z Z I dmg (3-7)
r=1 s=1 %Krs r=1 s=1 9Mrs
where oA X2 X
= 2iosd (3-8)
ok g X;Mx
A .
i
= s £ sl (3-9)
oMy g 1 X Mxy




3.2 Eigenvector Partial Derivatives

Differentiate Eg. (3-1),
[K - AiM]dxi = drMx; - dKx; + Aidei (3-10)

and substitute Eq. (3-4) for dij

) ]
x.dKx, x. dMx,
[K - A;Mldx, = T o= A —2 | Mxg
XiMXi XiMXi
(3-11)
Choose for example a dependence upon stiffness element
Kyg. Then
X.:x_.dk
[K - AgMlax; = ZELsi77os Mx; - dkpg xg3{65,} (3-12)
XiMXi

where the expression Xsi{éjr} is equivalent to a zero vector

with a non-zero element, xg;, in the rth row. éjr is a Kronecker
delta defined by

éjr=0, r#j

6jr=l, r=j

j represents the number of the row or element in the vector in
this case.

- - XriXsi - )
[K kiM]dxi = S0 Mxy xSl{éjr} Ak g
XiMxi 0 \
0
or equivalently
- 3. = Xri¥gi : k
0




Let Fy = K = AjM.  If Xy is a single root {(eigenvalue) then

F; is of rank n-1 and cannot be inverted. Therefore no unique
solution exists for the vector dx; as shown in Eg. (3-13). A
solution can be obtained however if one of the elements of the
vector dx; is fixed equal to zero and any n-1 equations of Fj
are used to solve for the remaining elements of dx:;.* This
yields a solution for dx; which is dependent on the fixed
element. It is convenient to omit the equation (identified
by row in F.) which corresponds to the number of the element

in the vector dx:. For instance if the first element in
dx; (i.e. dx .) 1s fixed, then the first row in Fi would be
removed and the first element in the vector

XriXsi

which forms the right-hand side of Eqguation (3-13) is removed.
This omission of row corresponding to the zeroed dx. element
maintains the symmetry of the reduced form of F; ané simplifies
the problem solution.

Let us now introduce the notation | f{u ] where the bar and
superscript u represent the removal of the uth row and column
of | F; ]. The new matrix is of rank n-1 and hence can be
inverted to solve for { 5z } which is a vector of dimension

n-1 where dx;; has been sat equal to zero and removed.
Equation (3-13) now becomes

—U e U D e 1) — U1
[ Fy ] {dxi } =:< fl si {Mxi } - Xgy ;ajr €>dkrs (3-14)

Similarly for dm,.g we have
—Uu {———u} Xt X..: —U ~—u
= x.f*ri®si _ s -
[ Fy ] dxi Ay _T_m__<Mxi } Xg3 63r g dm,.g (3-15)
XiMxi

Completing the solution for the partial derivatives

e U

00X — =1/ XX s f e ' T
1 rirgsi
3 . g e . e s 6- 3""16
Bkrs [Fl ] (XiMXi {Mxl } XSJ—; Jr %) ( )

* This approach and development is based on the note, "Comment
on 'The Eigenvalue Problem for Structural Systems with
Statistical Properties'", by Larry A. Kiefling and published
in the AIAA Journal, July 1970.
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gaxi“g iaxi { |
and o= N (3-17)

—Uu
Numerically it is not necessary to invert [F. ] since Equation
(3-16) can be solved as a set of simultaneous algebraic equations.
A discussion of the matrix decomposition procedure selected to

—u
X
solve for {a L }is presented in Section 6.3.

rs

The eigenvector partial derivatives in Equation (3-16) are not
truly representative of any system unless a restriction has been
placed upon the eigenvectors that the element X3 of each eigen-
vector x. be held constant. In instances where the eigenvectors
are normalized such that the first element is always one, Equa-
tion (3-16) would be valid for the superscript u equal to one.

That is to say, Eill = 0 and Xy; = constant. If, however,

rs
the eigenvector solution requires a constant generalized mass
(x;Mx. = const.), Equation (3~16) is not satisfactory and a
further operation is necessary to obtain the full vector of

partial derivatives, ifi .
kg

kg

developed from (3-16) but with a zero inserted in the uth element
rather than having the uth element omitted. That is

( \

u
Define {Bxi } as the vector of partial derivatives

axli
akrs

Ox%pj

jain} _ ‘< Bx;u s ) (3-18)




Next form the generalized mass using {93x, )

u
90X,

(M) ({x.} + 3 i E dk
1 3K o s

u
3Xi

okyg

M.

irs (3-19)

g dkyg

{Xi} +;

whereas M; as defined below is the generalized mass without
perturbation.

(g} IMT0x; ) = My (3-20)

. . 0x4 . .
The objective is to find a new vector g_i. with no fixed
k
elements, which will keep the generalized¥S’ mass M; constant.

[0 + {258 | e,

dKyg

= M. (3-21)

"Ml {x;} +53§1 § dkpg i

[3krs

u
Divide Equations (3-19) and (3-21) through by M, and M,
irs i

and equate,

u u

: i i ( "¥pi gk ) i g
¥ Xpi * rs | ™ (X i T rs
Mirs p=1 g=1 dkrs Pd q IKys
n n
00X . QX 4
Ly Y Pp1 ai
= X+ + dk m X . + dk (3-22)
M3 p=1 g=1 ( pt Ikypg ts pdiar dkyg rs

From Equation (3-22) it is possible to equate eigenvector
elements, hence

dx i 4 i .\ 3xpiu N
X + Pl = X
i rs : u i rs
P kg irs P 9Kyg )

u
M. M. 00X s
e SR T SR P gk (3-23)
M, Y pi Im, Y ax rs
1rs irs rs




M. . . .
The ratio L contains the derivative dk

. u
MlI’S

out M;.,s from Equation (3-19), we have
)
u ] 8Xi
Mo = {xg} [MI{x;) +} s [M]{x; }ak,g

rs
[ aX.u

+ {xi}[M]g 1 idkrs
dkrs

3 .u ' .u
+; ] { [m]%axl ;(dkrs)z
okypg okps

Note that [M] is symmetrical and (dkrs)2<< dK g«

(3-24) becomes

[M]{Xi}dkrs

ax: o
Mo Y= ML+ 23 1
Akys

Then

N

2 BX'ué'
1+ 23922 0 [m1{x.: }ak
Mi§3krs 1 rs

which expands into

M. u,! :
i 142 dX.
T e ] $ [M]{x.: }dk
1
1-3 /2 ox. 4
+ | — 1 [M]{x;}dk,g
2:4 \ My (dk,g

Again assume (dkrs)2

of (3-27) to vanish.

rs -«

Multiplying

(3-24)

Equation

(3-25)

(3-26)

2

(3-27)

o(dkrs, causing the higher order terms




Next, substitute this linearized form of (3-27) into (3-23)
to get

u 1
8Xpi Xpi 9%; (x: )
dkpg = e [M]ix4 }tdk
ak:;:'s Mi ' akrs s
1 (9x; 4 a4
+ (1 ~ _g_i [MI{x;}ak, | —BE dk g
. |9 3
Ml Kyg rs
9% i x.i (9% )"
= pl1 - _pi 1 [MI{x.} dkrs (3-28)
dkpg M; kg 1
and
u u
Bxpi _ axpl _ Xpi gaxi [M]{x;} (3-29)
dkyg dkyg My akrs

Note in Equation (3-29) that Sxpi is not symmetrical, i.e.
ok
Bxpi . Bxpi rs

okyg dkgy

This means that the property of symmetry which is so convenient
in the handling of the mass and stiffness matrices is lost and
the partial derivatives of x,; must be computed with respect to
every element of the stiffness matrix. However, since the
stiffness matrix will always be symmetrical, there is no reason
to treat the partial derivatives for symmetrical elements separ-
ately. Thus add the two and treat the sum. Using Equation
(3-16),

3521“ 33xi“)
okyg aksrg
= -3 .
—u|-1 [ 2XyiXgj j““‘u} {““u —u
= |Fq Mx, & - x_. 8. } - x .{5. }
1 ] PPV i si jr ri s
| X3 Mxy ! 1=

ey | =L | 2K e X —u u
= F.u —TEE_EL {Mxi } - {xsiSjr + xri6js } (3-30)
B o xiMxi

Equation (3-30) is very similar to (3-16) except for the factor
of 2 and the additional element.




4,0  ELEMENT PROPERTY SENSITIVITY MATRICES

The structural makeup of a great many structures can be
described by a series of beam and plate finite elements. In
this study, a standard beam element (12 degrees of freedom)

and a triangular plate element (15 degrees of freedom) were
used in developing the relationship between physical pro-
perties of the structure and the eigenvalues and eigenvectors
of the dynamic system. In addition, procedures are described
and allowances are made for the inclusion of stiffness matrices
for other element-types.

The procedure used for the development of the stiffness matrix
partial derivatives is summarized as follows:

(1)

(2)

(3)

(4)

(6)

the stiffness matrix is identified for the
structural element of interest in local (element)
coordinates

variables in the stiffness matrix which can be
random variables are identified (note structural
geometry such as locations of nodes are not
considered to be random).

the stiffness matrix is differentiated with
respect to each of the properties which can be
random. Each set of partial derivatives (with
respect to a property) is stored in a separate
matrix.

rotation matrices are developed from the coor-
dinates of the nodes.

the matrices of partial derivatives in local
(element) coordinates are transformed into
matrices of partial derivatives in system (global)
coordinates.

the partial derivatives from each of the matrices
are removed and put in columnar form in a new
matrix. Each column represents sensitivities

of stiffness elements to a different physical
property.

The procedure as described is used on both the beam and plate
elements in the sections that follow.




4.

1 Beam Element

4.1.1 Introduction

The beam element stiffness property sensitivity matrices
with respect to a global coordinate system are developed

in this section. The end result is a property sensitivity
matrix which relates the partial derivatives of member
geometric and material properties to the partial derivatives
of each element in the beam stiffness matrix.

The beam element is assumed to be straight and have a uni-
form cross section. Material properties are invariant
along the element's length and both internal shear and
bending deformations are considered. Each cross-section
is capable of resisting axial and shearing forces, bending
moments about the two principal axes in the plane of the
cross-section, and a twisting moment about the centroidal
axis. Figure 4-1 shows a typical beam element with axes Yo
and Z, corresponding to the principal axes of the cross-
section and the centroidal axis, X. The six independent
displacements at each end of the element are shown in this
figure and noted as type {U} displacements.

It is important to emphasize two points. First, the member
centroidal axis, X, is always directed along the length

of the element and corresponds to the bending neutral axis
of the beam. Second, the Y, and Z, axes are identical with
the two principal axes of the beam cross-section. The
importance of this is the uncoupling of the induced stresses
caused by the bending moments corresponding to Ug, Ug, Ujj
and Uj;, (see Reference 3, Page 70).

4,1.2 Beam Stiffness Property Sensitivity Matrix

The derivation of the beam stiffness matrix for the general
beam element shown in Figure 4-1 can be readily available in
a number of references (e.g., see Ref. 3, pgs. 70-82).

Table 4-1 gives the resulting member stiffness matrix which
was derived including shear and bending deformations. The
beam properties that are present in this matrix, and the
ones that may be considered as random variables are:




Figure 4-1 General Beam Finite Element
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E - Young's modulus of elasticity
v - Poisson's Ratio
A - Beam cross-sectional area

I,, Iy - Beam cross-sectional moment of inertia about
Y, and Z, axes, respectively.

J - Beam cross-sectional polar moment of inertia
about X axis.

SF 3, SF2 ~ Beam cross-sectional shear factors about the
Y, and Z, axes, respectively.

It is noted that the properties which involve the geometric
dimensions of the cross section are not independent random

variables. 1In general, the covariances between these pro-
perties are non-zero and for each distinct cross-section
(e.g. circular, square, tubular, etc.) there exists a unique

relationship between the cross-section dimensional statistics
and the above mentioned property statistics. This topic is
discussed in detail in Section 5.

Central to the formulation of the natural frequency and

modal statistics of a structure is the property sensitivity
matrix. This matrix mathematically relates linear variations
in the beam random properties to the force-displacement rela-
tionship (i.e. stiffness matrix). Corresponding to each beam
property there is a unique property sensitivity matrix,

noted

8[Kbeam]
— i P =E v, A Iy 13, J, SFp, SFy
P
where
[Kbeam] = beam stiffness matrix in the X, Y., 2,

coordinate system

These eight sensitivity matrices are all of order 12 x 12
and each results from taking the partial derivative of each
element in the stiffness matrix with respect to a prescribed
property. For example,

8[Kbeam]

ad

is a 12 % 12 property sensitivity matrix calculated by taking




the partial derivative of each element in [Kpgogy] with respect
to J. Since only the elements in the fourth rows and columns
contain J (Table 4-1) all other elements in the sensitivity
matrix are zero. Therefore, the property sensitivity matrix
corresponding to the torsional constant has only four non-zero
elements - (4,4), (4,10), (10,4) and (10, 10). The other seven
sensitivity matrices are, in general, more complicated, but the
method of development is the same.

Certain characteristics of these property sensitivity matrices
are worth noting. First, they are symmetric matrices because
they are obtained by partial differentiation of the symmetric
stiffness matrix. Second, they are not necessarily positive
definite. This follows from observing that the terms on the
diagonal of the property sensitivity matrices may be zero or
negative.

Seven of the eight sensitivity matrices are shown in the following
tables (Table 4-2 to 4-8). The elements are shown as a factor
times the original stiffness element, e.qg.

dkoo ¢y k22
5A (1+0,) A

The table for 9[¥peam! is omitted because it is equivalent
oE

to 1

£l ¥peam! -




v G CerD) o . 0 v (Zpe1) 0 ¥ (Zo-2) (FosT) 0 0 0 v (ZerD) 0
T T, Zoe 8727, "z, 9721y ot LA M
¥ (fgep) (€447 £
T, o Y Cen 0 0 o v (£4-2) (Ep+1) 0 v (Bes) 0 0
7 -—Ts
F33 6 Hax €q S Hﬁx non €Ty no
o 0 0 (] 0 0 0 0 0 0
£
¥ (Fe+l) 0 0 0 v (fee+1) 0 v Mn.#av Py °
Oax mo mmx mo Max ﬂ.
¥ (Cee1) o ¥ (Ze+T) v (ZeeD)
v e S5 % 0 0 0 —_——— (]
] ® b ® By T,
v X by
NHI 0 0 1] 0 [1] .ﬂbl “ 9
bt
v (2 z z
- ( o+vwa $+7) 0 0 0 NM ( “.+3 0
| o€ | ¢
stx3eumks v (Soem2 0 v (Eer) (EoaT) 0 o
nmx MO mmx m.Om
0 0 0 0
Y (EeeD)
= [ °
Tty g,
¥ {feel) o
2y 2,
X
ﬁ Ty

e

Tiro: ‘XTI3eW AJTATITSUSS JUDWA[F weag Z-¢ @1qey
ﬁﬁmwnv—ua TIIeW



4-8

0 0 0 0 ) 0 0
T+ ¢€ £ z €
I(* o+ + I ("9+1) tr (¢ £
(S o+¥) (S0+T) s i 0 0 o I(fe-2) (Fo+D) LI(%e+1)
TS v+ Spz+50) (Fo-tez-2) LLLE S S
0 0 0 0 0 0
1 4 €
gL Cem 0 0 21 (So+T) ‘I(0+1)
A T Y T @ 1
0 0 0 0 0
0 0 0 0
0 0 0 0
2 G%+v) (So+T) Tr (€
I( 0 I( ¢+1)
oTI139umks S (y+Cpz+.0) X 1
0 0
«m;?:
P |
t1e

Teesa,]e XTI3eW A3TATATSUSS IUoWSTH weag €-v °Tqel
A
S Bt —— S S e — h— S o




prmes

€T (Zo4p) (To+T)
4
T ey (yel

(=]

0T+,%)

o

€ (Zo-7) (2
- ¢ -
8720y~ 1 0 %%y (Pe-Zez-z) © ° 0 77Ty T
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
€1 (Fo+m) €1 (Zo+T) €1 (To+1)
B8y — 1 0 98y 1 ° 0 0 8By~ 1
0 0 0 0 0 0
€1¢C rd
wuHA 9+MVA $+1) o o 0 €1 (To+T)
A (v+°0z+5%0) 4 TN
0 0 0 0
0 0 0
oTI3sumis 0 0
I (To4T)_
TTY T 1

f1e
memwam_m ‘XTI3eW AJTATITSUDS JUDBWSTF wedg p-p STqeL

4-9



. .
(as1) (Zoap) (ZgaTy (a+1) (oe) (aeT) (Zo-2) (20411 (a4T) (Eo-2) (E041) (0e1) (FeaTd (r+D) (Zes)

o

; 0 o 0 =
ZT T TxZg~ 87CTy  Zyo 9 ZTxZoc - S TixEeg- €Nyt Ty T,
(erTi (Baepy (E1amy . (a4 (Eo+1)
| 5 - —_ 0 0 0 0 ¢ e 0
: T TT,E 6°TT, ¢, _
¢ {1+1) T;w
| MIAIHW.AH 0 V] 0 0 0 vuoll.nx,l o] 0
(A+T) (E0+T) (a+1) (Ea+0) (A+1) (Caemd
0 0 0 e 3 0 0
66, €g. y - mmx €,
(a+1) (Ze+D) (a+1) (Zo4+T) 0 0 o (f+T) (Spem
° Rl
.:ax ~ol wmx Non ~ox [
) 0 [ c ¢ 0
(a+D) (Lpep) (To4Td o o o (0 (Fped
. 99yZog- T9y T
(a+1) (S0+9) (E041) o - (-+1) (Fpem) 0
13 [
mnxmomn X +
("+7)
Ty © 0
o1xX33umis X~
(+1) (E241) o
€€, £._
e (Tren)
[ 2Ty el
i
H
TR FR I L T S




~
0 0 0 0 0 0 0 0 0 0
T it : . ¢ 2as(fe-2) (“o+1) tas(fe+1)
dS( o+¥) ( e+1) g ds (" ¢+T) 0 0 0 S 11 P 0 T, ¢
Ty ot ..nﬂx oA ¥ ot A e
0 0 o 0 0 0 0 0
k4 £ -
as (‘e+1) tas(fo+1) tas  (“e+T)
0 0 0 0 —
anua nO mnv— mO nnum ne
0 0 0 ) 0 0
0 0 0 0 0
0 0 0 0
4 € & 2 €
ds ( o+F) (" 9+1) ds (" o+1)
0
mme MOM mmx ne
0 0
z 13
S T.13oumAs IS{ o+ 1)
LR C
b o
tase

ﬁemwnxdm ‘XTI3eW A3ITATITSUDS JUSWITT wead 9-y SIqel

4-11




tas(Co+p) (Po+T) ‘as (Te+1)

€ 4 z 3 z
0 ds(“¢-2) ("e+T) o 0 0 ds ( o+1)
REERPY ZoE 0 0 0 CEER N Ty Tt TNy Tz,
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
¢ t
fas (o) . fas (Po+1) o o o fas (Fo+1)
80y ~o :x Ne :x «e
0 0 0 0 0 0
fas (“o+p) (Po+T) . . . fas (Co+1)
T
9y *oc 1 ‘e
0 0 0 0
0 0 0
oTI3auwAS 0 o
©as (¢ +1)
NNX ve
€
dSse

‘xrijew AITATITSUDS FUDWATI weodq L-v -T9eL

?mwnxu °

4-12




o 1x133uuAs

0 0 0 0 0
0 0 0 0 0
0 0 0 ﬂ.n.m.ﬂ 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0

L
Poy 0
0

re

_”Emmnm._m ‘XTI3eW A3ITATITSUSS Juswald weag g-p oTqel

4-13



4.1.3 Rotation of the Beam Property Sensitivity Matrices

Two types of reference frames are usually used in a structural
dynamics problem. The first is the global or system refer-
ence frame which is assumed to be fixed in inertial space.

The second type is the member reference frame. The orienta-
tion of the axes of this frame is defined with respect to

the particular structural member (e.g. see Figure 4-1) and

in our problem these axes, Xnr Y., and 2.+ correspond to the
centroidal axis and the two cross-sectional principal axes

of the member. It is convenient in matrix structure problems
to first define all inertial and stiffness properties for a
particular member in terms of the member reference frame

(Xm,» Yy, Zm) and then to systematically rotate the properties
to corresponding expressions in the structure reference frame
(Xg, Yg, Zg). Such a rotation procedure is followed in the
development of the member property sensitivity matrices.
First, as described in the previous section, the beam property
sensitivity matrix is developed with respect to the member
reference frame (Xy, Y, %p). In this section we discuss its
rotation into the system, or global, reference frame.

Detailed derivation of equations for the rotation of force
and displacement matrices can be found elsewhere (e.g. see
Reference 4 , pages 18 - 31). Only the additional steps
relevant to this task are presented in this section.

The rotation of the member property sensitivity matrix from

a member to a global reference frame parallels the rotation

of the corresponding stiffness matrix. First, the orientation
of the member reference frame is established with respect to
the system reference frame. This is accomplished by a
sequence of three distinct rotations from one reference frame

to the other contained in a rotation matrix, [R]. [R] has the
form
[y] Symmetric
(0)[y]
[RI =V [oll0]ly] (4-1)
[01[o][0][vy]

where [y] is a 3 x 3 matrix representing the coordinate
transformation from the Xy, Y, %y, frame to the Xg, Yo, Zg
frame. Three distinct points in space are needed to define
this rotation (Figure 4-2). Two of the points are on the
beam centroidal axis, located at each end of the member. The
third point must be defined away from the member axis and

is used to orient the cross-section relative to the axis.
This point normally lies in a plane formed by the beam axis
and one of the principal axes of the beam cross-section.




Figure 4-2 Three-Point Definition of

Member Reference Frame




The coordinate numbering of the beam stiffness matrix

(node 1: 3 transl., 3 rot.: node 2: 3 transl., 3 rot.)} and
the straight centroidal axis of the beam permit the repeated
use of [vy] consecutively down the diagonal of [R].

The matrix equation defining the necessary rotation operations
is

3 (k) o200
= [R] |—— R 4-2
beam beam
where 3 (k) _
l}pj] © 3pj |fbean]
beam
Once all of the elements of [%(k)%]
Bpj beam

have been computed, they are stored in a single column in a
new matrix of the form shown in Equation (2-16).

The form of this matrix, for the beam, is shown in Equation
(4—3) .

3kllr 3kllr 8kllr akllr akllr

SE 3A 31, 3T, 3V

Oy, Oky, 3k, Bky, 9Ky,

SE 32 31, oI, 3V

3 (p) . . . . . . e .
beam ’ (4-3)

dknn, Oknn, 9knn, Knn, knn

dE dA oI, 3T, 3V

o 3 (k) a .
Since is symmetrical,only elements on the
P+ ;
J dbeam
diagonal and on one side of the diagonal need to be stored

in forming [?iﬁl%]
v o (p) beam




4,1.4 Beam Mass Property Sensitivity Matrix

The mass in this analysis is concentrated at the nodes. Hence
the system mass matrix is diagonal and each element along the
diagonal represents the mass or inertia corresponding to a
dynamic degree of freedom. The masses and inertias are input
in system coordinates and therefore the component mass matrix
is not rotated as is the component stiffness matrix.

The mass at the node is treated as the random variable. Since
the mass in the three translational directions is by definition
the same, the transformation is unity. For the three rotational
degrees of freedom the mass is a factor in the moment of inertia
about each of the three axes, thus

Looking at the beam element we have two nodes with the mass
distributed equally at both ends. The unconstrained mass
matrix for structural element (i) in system coordinates is

m,,
nm,,
m,., 0
m, .,

[i1y] - N

0

My, 12
14

Elements m,;,, Mm,,, My, M, My, and mg,, are all equal and

each equal half the total beam mass. Elements m , m__, m ,
44 55 10,10

My 1y are equal and equivalent to some specified moment of
inertia about the X, Y, axes at each end of the beam. Elements
m, . and m,, ,, are equal and equivalent to a specified moment

of inertia about the Zg axes at each end. These inertias gen-
erally contribute very little to the dynamic characteristics

of the system and in many structural dynamic programs are set




equal to zero in order to eliminate dynamic degrees of
freedom and reduce the size of the model. In this model,
however, no such reduction takes place and each of these
inertias are considered.

The property sensitivity matrix for mass shows only one
sensitivity and that is to the mass, at the node, thus

[ \

m,

beam Mg

my,

4.1.5 Synthesis of the Stiffness and Mass Property Sensitivity
Matrices =-- Beam

. (k) 9 (m) , . .
The two matrices and developed in Sections
beam eam

3 (p) om
4.13 and 4.14 are combined into a single matrix 9 (ky,m)
3 (p) |beam

as the next step in the development. Each column in this new
matrix contains a set of paxrtial derivatives, all with respect
to the same independent variable. The first eight variables are
the stiffness oriented variables E, Iy, I3, etc. and the ninth
is the mass.




The matrix is partitioned as shown below.

FScome9$&lcchmnq

. i
t%g%%q : {0} up?to
9 (kr,m)] - P ! 7itr_ows
3 (p) beam [ 1
[0] | {a (m)} up ' to
B | am i lZYrows

The matrix will always have nine columns but the number of
rows will depend upon the constraints upon the beam element.
If there are no constraints the number of rows in each column
of stiffness partials will be 1/2(n2 + n) = 78 where n, the
number of unconstrained degrees of freedom in this case, is
equal to 12. In addition there will be 12 mass partial deri-
vatives (one for each unconstrained degree of freedom) making
the total of the number of rows reach 90. This 90 x 9 matrix
is equivalent to the matrix, [C], in Equations (2-20) and
(2-21). The number of columns must be conformable to the
property covariance matrix to be developed in Section 5 and
the number of rows must be conformable to the eigenvector

and eigenvalue partial derivative matrix which will be discussed
further in Section 6.

The order of the properties acting as independent variables in
the partial derivatives in each of the columns, moving from
left to right is: E, A, I,, I3, v, SFp, SF3, J, and m.




4,

2 Plate Element

4.2.1 Introduction

The plate element used in this program is a combination

of a sandwich element developed by H.C. Martin in 1967

(Ref. 5) and a triangular element which resists in-plane
forces (Ref. 3). The sandwich construction resists both
bending and shear. This particular plate was selected
because of its operational status in the STARDYNE structural
dynamics program. (VIDAP was designed to be directly com-
patible with STARDYNE,)

The procedure for developing the plate property sensitivity
matrix is similar to that for the beam except for the
additional degrees of freedom and the form of the stiffness
matrix elements. The steps are as follows: the stiffness
matrix is defined as the sum of six matrices of geometric
constants which are multiplied by constants containing the
physical properties; the property sensitivity matrices are
developed by differentiating the expression for the stiffness
matrix; the differentiated matrix is pre and post multiplied
by a rotation matrix to put the partial derivatives in

system coordinates; and the resulting partial derivatives are
stored in columns, each column representing a separate
physical property.

The plate element used in this development is only one of
many available today. It is, however, quite general and can
be used in a variety of situations. If another plate element
model is preferred, the method used for partial derivative
development described on the following pages can be used with
proper modifications and be entered into the VIDAP program

as a general element as described in Section 4.3.

4,2.2 Plate Element Stiffness Matrix

A detailed physical and mathematical description of the Martin
triangular plate element is presented in Ref. 5. 1In this

section we shall discuss the physics of the element, its range
of application, and mathematically define its stiffness matrix.

Figure 4-3 shows a schematic drawing of the sandwich plate
element; it is composed of five basic structural components:
two cover sheets and three shear webs. The coordinate identi-
fication is shown in Figure 4-4. Note the omission of the




coordinate of rotation about the Z, axis at each of the nodes.
This means that each node has only five degrees of freedom
and in the development of a stiffness matrix which allows

six degrees of freedom at each node this will be equivalent
to having zero plate stiffness in rotation about Z, at each
plate node.

The triangular top and bottom cover sheets, or flanges, are

two dimensional plane stress finite elements. Each component
sheet has two in-plane nodal degrees of freedom at its corners.
The stiffness matrix corresponding to each cover sheet is

given in Equation (4-4) (see Ref. 6, Turner, Clough, Martin, Topp).

Note that in all the succeeding matrices expressions such as
X1 and yy3 are obtained from the following identities

X n = X_ = X
B

YaB = Yq - YB

where Xyr Xgr Yyr Yg are coordinates of nodes o and B in the

member coordinate system.
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’ /ﬂz//,Shear Web

Figure 4-3 Schematic Drawing of a Martin

Finite Element

Figﬁre 44 Coordinate Identification of

the Triangular Plate Element




The cover sheet digplacements and the sandwich element
displacements (rotations) are related as shown in Figure 4-=5

kliﬂa _{} o
/

b a : !
T “ - - X - > Yo
I i /4 i

. _@/

Figure 4-5 Relation Between Cover Sheet
Displacements (uy, Vv,) and Corresponding

Sandwich Element Displacements (Oxa, OYa)

These relations can be put in matrix form for the three nodes
as follows

— —
(ul\ 0o 11 | ( Ox )
r | 1
[ i
N J ™ WU DUV U U
u, s i o 1l J Ox,
¢ 2 , | > (4-5)
ug l : o 1 Ox
! |
i -
\ / — -\ /

or {u} = %E (r]{o}

The bending stiffness for the plate is constructed from [T]
and [Kgl. The derivation is given in Ref. 5, pp 2-6.
The stiffness in bending expanded to all fifteen degrees of
freedom is shown in Equation (4-6) on the next page.
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Three pure shear structural components are used for the web
of the element. As the name implies, these components only
resist shearing deformation. Each shear component connects
two corners of the upper cover sheet with two corners of the
lower cover sheet. The stiffness matrix of a typical shear
component is given in Equation (4-7)

Aw
(E" 2is obtained from the following expression
’{%\_vz) \ B (. 2)
L 12 -1 1 . Li-o
AW) Tp 2
Aw _ P _ 4-
(3 - ) = 1 1 1| { Ly_4 > (4-8)
A
{Eﬂ) 11 -1 L3_12
\ 3-1) - \ )

where A is the surface area of the plate and Lyg is the linear
distance from node o to node B.

The stiffness matrices in Equations (4-6) and (4-7) are for
out-of-plane loads only. The stiffness matrices due to in-
plane loads are obtained from Reference 3, p. 86. The first,
Equation (4-9) is the stiffness due to normal stresses and
the second, Equation (4-10) is the stiffness due to shearing
stresses.
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The complete stiffness matrix is constructed from the bending,
the normal, the in-plane shear, and the out-of-plane shear
stiffness matrices. The summation is shown in Equation (4-11).

[Kplate] = [Kpl + [K,] + [Kg] + [Kyyl o, + [Kw]2_3

+ [Rylg g (4-11)

Equation (4-11) produces a 15 x 15 stiffness matrix in the
member reference frame, where the origin is at node 1, the
line between nodes 1 and 2 forms the X axis and the plate
lies in the XY, plane.

4.2.3 Plate Stiffness Property Sensitivity Matrix

Five properties of the plate stiffness may be considered as
random variables

G = modulus of rigidity of the core material
To - thickness of the core

Tp - total thickness of the plate

E =~ modulus of elasticity of the face sheets
vV - Poisson's ratio

As in the case of the beam, nodal dimensions are not considered
random.

The derivation of the plate element stiffness sensitivity
matrix follows the same principle as that used for the beam but
the procedure is slightly different. A quick glance at
Equations (4-6, 7, 9 and 10) will reveal that most of the

time the properties listed above are found in the constants
multiplying the entire matrix rather than within the matrix
elements themselves. Only Poisson's ratio lies within these
constituent matrices.

Let
GT
[k, = (KD p + [ 0pg + [Kylyq = 350 (K] (4-12)
ETp 3y
= . 4-13




(k,] = ETp TV 1k, (4-14)

2

E(Tp-TC)(l—v)w [k (4-15)

4

[Ks] )]

[K4] contains only geometric terms and is the matrix expression
in Equation (4-10). [Kl] is a composite of the matrix expression
for the three shear webs and is shown in Equation (4-16). [K;]
contains only geometric terms too and thus will not change in
form when [K,jgte] is differentiated. The matrices [K,] and

[K3] both contain the single physical constant v and thus will
change form only when differentiated with respect to v. The

3[Ky] and °[¥3] e shown in Equations (4-17)
v av

matrices

and (4-18).
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The stiffness matrix can now be written in the following
form

3 / ]
GT ET, >y , E(T, - T.)¥
K = P [K + p K + P c [K3]
[Kpiate! Ton [K1] [Ks] 5 3
+ Blfp T = VIV g (4-19)

4

The differentiation of (4-19) with respect to each of the
five physical variables leads to the following five expressions

d[Kplate! s
—_—E = K 4-20
3G 32A [%y ] ( )
0[Kpiate) _ _ EV E(L - v)y
o7, P [K3]- — [K,) (4-21)
8[Kp1ate] G ET ZW Ey
p = — [Kq] + P ' [Ky] + L [K,]
3T, 32A 8 2 3
+ E(1 - V)V
4
3
8[Kplate] _ TE 1 (k.] + (Tp - TV (K]
OE 24 2 3
. Ty =T )1 “V>W[K4] (4-23)
4
3 2 3
a(k)plate - 3[Kpiatel _ ET_ AWy (Ry] + ET, "y 3[K,]
RV LAY 6 2 24 RY)

+ ZE(TmeC)Avw2[K3}+ E(T,-To) Y 3[Ky]

2 av

+ E(Tp = T )Y
4

{(8AVY(1-V) - 1}[K4]

(4-24)
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The 3 x 3 matrix, [Y], describing the transformation from the
Xmr Yqr 2y frame to the X, Yg, Zg frame is developed in the
same manner as that used %or the beam with the three node points
of the plate corresponding to the 3 reference points for the
beam (see Figure 4-2). However, with the plate element there

is no rotation about the Z, axis even though the system permits
such a rotation. Thus in transforming from member to system
coordinates the stiffness matrix enlarges from 15 x 15 to

18 x 18. The rotation matrix, used to transform Xy, Ym: Zm.

@Xm, and OYm into Xg, Yg, Zg, @Xs’ eYs’ and OZS is therefore

Yll Y12

<

13

Y23 [@

[Yplate] = Vo1 Yo Vs (4-25)

Y11 YIZ Yl3

Y21 Y22‘

o) |
—.(21 Y22 Y23

by 3

where the 3 x 3 [y] is identical to that developed for the
beam. '

The complete rotation matrix for the plate is

[Ypiate] (0] [o]
[0] [o] [Yprate!

[Rplate] is a 15 x 18 matrix. The resulting stiffness matrix
in system coordinates is

[Kplate (syst.)] = [Rplatel [Kplatel[Rplate] (4-27)

As in the case of the beam, the rotation procedure applied to
the plate stiffness matrices carries over in the transformation
of the partial derivatives into the system coordinates.




The equation is

3 (k)| T3 ) p1ate .
I - J = [%plat{} [ Srs [%plate (4-28)
[ Pi plate P1 J

2
Once all of the elements of [.(k)f] have been completed,
plate

api
they are stored in a single column in a new matrix of the form
shown in Equation (2-16) and (4-3). Since [d(k)y

plate

Ipi
is symmetrical only the elements on the diagonal and on one
side of the diagonal are stored in the formation of[?(k){}
plate

o (p)

4,2.5 Plate Mass Property Sensitivity Matrix

As in the case of the beam, the mass of the plate is concentrated
at the nodes. The plate element mass matrix is set up in system
coordinates rather than the member reference frame to permit the
utilization of a diagonal mass matrix. The unconstrained mass
matrix is 18 x 18 to accomodate six dynamic degrees of freedom

at each node. '

The mass at the node is treated as the random variable and the
partial derivatives of the mass elements are all taken with
respect to the actual mass at the node. The property sensitivity
matrix is a column with up to 18 elements as shown. It is

formed in the same way as the beam except for three nodes rather
than two. It is assumed that the mass of the plate is equally
divided between the three nodes.

(over)




. M1 )

4.2.6 Synthesis of the Stiffness and Mass Property Sensitivity
Matrices -- Plate

Section 4.1.5 describes the synthesis of the mass and stiffness
property sensitivity matrices for the beam. The procedure for
the plate is identical except for the dimensioning. The eigh-
teen possible degrees of freedom of a plate requires an increase
in the number of rows required to handle the partial derivatives
for all the mass and stiffness elements. Thus the total number
of rows can increase to 154 for the stiffness elements and 18
for the mass elements.

For convenience in the development of the VIDAP program it was
decided to maintain the property covariance matrix as a 9 x 9
matrix. Therefore in the development of the plate property
sensitivity matrix where there are only five properties which
can affect stiffness and one which can affect mass, three
columns will contain all zeros. The arrangement of the columns
is shown below.




3 (ky,m)
3 (p)

5 3 1
[%Eolumngwwﬁéolumﬁ§®T®Eolumn@%

up to
171 rows

up to
18 rows

¥

The order of physical properties acting as independent
variables in each of the first five columns moving from left

to right is G, Tas Tp, E, and v.

in the ninth column " is m.

4-39
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4.3

General Stiffness Matrix

4.3.1 General Discussion

A particular structure may, or may not, be composed of only
beam and plate elements. For this reason we shall outline
the procedure required to formulate the sensitivity matrix of
a general structure. :

In formulating the stiffness matrix of any structure we
visualize a sequence of unit generalized displacements being
applied successively at generalized coordinates creating
corresponding generalized forces (stiffness coefficients).
Therefore, the different component parts of the structure can
be imagined to overlay in the stiffness matrix. In order to

- demonstrate this and clarify further discussion, consider the
example structure shown in Fig. 4-6. The stiffness matrix for
the structure (neglecting shear deformations) is

[ ]
4EAIA ‘
La
Symmetric
- 6EAIA lZEAIA + lZEBIB
Lp2 Lp°> Lg3
] -
ZEAIA - 6EAIA + 6EBIB 4EAIA n 4EBIB
2 2
Ly La Ly Lp Lg
6EBIB 2EBIB 4EBIB
0
2
Ly Ly Ly

Therefore, any statistical uncertainty in member A would

affect rows and columns 1 through 3 while any uncertainty in
member B affects rows and columns 2 through 4. If, for example,
only the modulus of elasticity of member A was random the struc-
ture sensitivity matrix would be zero everywhere except rows

and columns 1 through 3, i.e.
2 |
4Lp Symmetric
Bikj i In w6LA 12
9Ep Ly 3 21,2 -6L,  4L,°
O 0 0 0
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Figure 4-6 Example Structure

LLLLL
‘/;;~Elastic Wire, stiffness
1 3 4
Member A <IN Member B /F>
7
A, Ear I T 2 Epr I OGN

Figure 4-7 - Example Structure with
Additional Stiffness Element
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We can conclude using this example that only the rows and
columns of the stiffness matrix associated with the generalized
displacements which define the shape characteristics of the
member whose parameter (s) are random are nonzero. By altering
this physical system only slightly we can demonstrate the
procedure used for a non~beam or plate random member.

Consider the structure shown in Figure 4-7. A vertical wire
supplies additional stiffness to the beam at the midpoint.

The structure (beam) stiffness matrix will now take the form
- -

0 0 0 0

fa] < o] ¢ |0 0

0 0 0 0

L_O 0 0 04_

Inspection of this stiffness matrix reveals that uncertainty
in the wire properties will only affect element (2,2).

Therefore, TO 0 0 0-—
3 [ ]
bt 34 = 3
5D 0 ak” 0 0
0 g 0 0 ; p = random wire
property
0 0 0 0

This example demonstrates that if a general structural component
which contributes stiffness to the structure has a random pro-
perty, then only the row(s) and column(s) associated with
generalized coordinates which prescribe its deformed shape are
nonzero. And, a partial derivative of the elements in these
rows and columns with respect to the random parameter result in
the stiffness property sensitivity matrix.




The VIDAP program is designed to handle the statistical char-
acteristics of beam and plate elements and arbitrary stiffness
matrices for general elements. If the option is to use an
arbitrary stiffness matrix with some specified randomness, the
property sensitivity matrix and the property covariance matrix
must be developed outside the program, be multiplied together,
and be entered as a single matrix into the program. This

procedure means that the product [c][(i)Zp][c]' in Eguations
(2-20) and (2-21) is entered as a single matrix. An example
of the development of this product is shown in the sample
problem in Section 7.

If an arbitrary stiffness matrix is used, the compatibility of
- the elements in the product [C][(i)Zp][C]' with the partial
derivatives of the eigenvalues and eigenvectors must be
assured by hand preparation of the [KR] and [KS] matrices.
These matrices are explained in Section 6 and are developed in
the sample problem in Section 7.




5.0  PROPERTY COVARIANCE MATRICES

5.1 Introduction

In Section 4 methods were presented which developed the partial
‘derivatives relating mass and stiffness matrix elements to
specific beam or plate properties. This completed the partial
derivative development necessary for relating physical pro-
perties to modal properties by means of Equations (2-17) and
(2-18) in Section 2. The remaining step therefore is the
construction of the covariance matrix for the physical properties
to be incorporated into Equations (2-21) and (2-22). The

general form for the property covariance matrix is shown below.

[ -
2
%p, P129p, %, P13% %,
2
p120p10p2 %p, P239p,9p,
(2] - 2
P15%9p, Op, P25%9p,%, Op .

If properties such as E, v, I, t, A, etc. are statistically
independent, the correlation coefficients, p;+, vanish and

the matrix is diagonal. However, in most casés correlation
does exist because, for example, A, I,, I3, and J depend upon t.
This covariance varies with the cross-sectional configuration
of the element and since the variety of configurations is
limitless this part of the statistical operation is computed
outside the VIDAP program and provided as an input in matrix
form. The remainder of this section is devoted to tutoring

the user in the development of these covariance matrices.




5.2 Development of a Property Covariance Matrix for a Tubular
Beam Element

The physical properties used to describe the stiffness matrix
for a beam are E, A, Ip, I3, v, SFy, SF3, and J. In the case

of a tube the properties A, I,, I3, and J are all dependent upon
the thickness, t, and the inside radius, r, of the tube.

For t «r
J = 2mrlt

Iy, = I3 = Ttr3

A = 2rrt

m = p2rrt L* 1/2 (beam mass is split between the two
nodes, this m is for a single node)

39 - 4mrt ‘

ar

ad o 2mr2

ot
222 = 37rtr2
or

%%2 = 7r3
%% = 27t
%% = 27Mr
%% = Tpth
%% = mprL




Assume E and v are statistically independent of each other and

all other wvariables.

The form factors, SFy and SF3, are func-

tions of the geometric character and not of the specific
measurements and in the case of a thin-walled tube are quite

well known (no uncertainty).

Therefore t, v, E, v, and p are

the independent random properties and can be described statis-
tically in terms of a diagonal covariance matrix.

‘ l—:ztl rr‘Er V, p] = 0
‘ 0

0

.

Next describe the beam properties as functions of these inde-

pendent properties.

((ag ) 0 0 1 0 0 (ae
dA 2Ty 2rt 0 0 0 ‘ ar
dI, mr3 3rtr2 0 0 0 V < dE

4 dIjy mr3 3mtr2 0 0 0 av
a [T o 0 0 1 0 \ do )
dsF, o - 0 0 0 0
dSF3 0 0 0 0 0
daJ 27rr2 4mrt 0 0 0
dm TprL TptL 0 0 TrtL

\ } B p p _

- dt
2(B, A, Tp, . .)])9E
a(t, r' E, ° ) d-\)

dp




Thus

5(E, A, I3, . . ) [B(E, A, I, . .)]'
% = Zt, r Gs Vy,
[ p} [a(t, r, B, . . ) } [ g p] o9(t, r, E, . . )

Note that [Ip]  is always a 9 x 9 matrix and the entire pre-
paration of TZp] must be made prior to input into the VIDAP
program.
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Development of a Property Covariance Matrix for a
Sandwich Plate Element

The physical properties used to describe the stiffness matrix
for a sandwich plate are G(core), T¢ (thickness of the core),
T, (total thickness), E (face sheets), and v (face sheets).
Tﬁe probable random variable will be face sheet thickness (h),
core thickness, G, E, and v. Building a covariance matrices
out of these latter variables we have

oo —

og 0 0 0 0 0

0 op,2 0 0 0 0

[ZG, Te, h, E, Vv, m] = | ,

The plate properties can be written as functions of these
independent properties as follows

_
( dac \ 1 0o 0 o0 0 0T ( dG )
aT . o 1 0 0 0 0 AT,
dh
aT,, o 1 2 0 0 0 < ?
dE o 0 0 1 0 0 aE
{ av = o 0 0 0 1 0 dv
0 o 0 0 0 0 0 \ anm )
0 o 0 0 0 0 0
0 o 0 0 0 0 0
| dm o o o o 0 1
G
3(G, Te, Tp, E, v, m)} g
L3(G, Ta, b, E, v, m ah
dE
dv
dm




Recall that the property covariance matrix is always 9 x 9 and
therefore the properties affecting the plate stiffness are in
the first five rows in the above matrix, whereas the mass is in
the ninth row. The resulting covariance matrix will have all
zeros in the 6th, 7th, and 8th rows and columns but this will
be conformable with [a(kr,m)

-——————] as developed in Section 4.2.6.
9 (p) plate

Thus
[ZPJ = [a(Gl TCI Tp’ . ')}[ZG, TC’ h’ __:I[B(Gr TC’ Tp,. _)]l
a(G’ Tc, h, ) ‘) B(G, TC’ h,- -)

As mentioned in Section 4, the mass of the plate is divided
~equally between the three nodes. The variance of the mass
included in the covariance matrix above is for one node only
and hence in preparing the data use one-third the standard
deviation of the mass of the total plate.




6.0  SYNTHESIS

6.1 Construction of the Mass and Stiffness Matrices

In Section 2.2.1 a truss example was used to describe the
development of the stiffness matrix. It was noted that the
first step in the stiffness matrix development was the con-
struction of the undeleted stiffness matrix shown in Equation
(2-8) and repeated in Eguation (6-1) below,

(1] | [-2] fpes) |-
[Jundetetea = |[2-1] | [-2] 1[2-3] | - (6-1)
| [3-1] , [3-2] 1 [3-3] |

where the submatrices [i-j] are the nodal stiffness matrices.*

The undeleted mass matrix is a diagonal matrix as shown

ORI O
[Mlungeretea = | [0] 1[2-2], [o] + - (6-2)
RO N

The dimension of the undeleted mass or stiffness matrix is

6 X no. of nodes. The dimension of the dynamic mass or stiff-
ness matrix is the dimension of the undeleted matrix less the
number of restraints upon the system. To reduce the undeleted
matrix, the rows and columns corresponding to each constrained
degree of freedom are removed and the remaining columns and

rows are shifted to £ill in the voids to form the smaller
matrix. This method only permits constraints that are aligned
with the coordinates. Further sophistication of the constraints
is possible but was not considered necessary in this analysis.

The mass and stiffness matrices of large dynamic models require
a large amount of computer storage and as a result methods have
been devised to manipulate the form and reduce the storage
requirement. VIDAP has been designed to handle 300 degree-of
freedom systems. The diagonal mass matrix is stored as a column

*Node numbers must be consecutive and start with 1.
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and the symmetric and banded stiffness matrix is stored vert-
ically as a semi-band in a rectangular format. These formats

are shown pictorially in Figure 6-1.

System Mass Matrix

VIDAP Form

< —_ -
m;, mllw
my o 0 m,,
=
0 .
mnn_N mnnJ
System Stiffness Matrix VIDAP Form
_ - — -
kip ko k13| ki, kyo Ky
k21 kzz kzs kzq 0 k22 k23 kzu
® ° Y :> ° ° ®
0 . : 0
l Knn knnlo 0
Figure 6-1 Storage of the System Mass

and Stiffness Matrices in VIDAP




6.2 Compatibility

The purpose of VIDAP, as discussed earlier, is to produce
statistical characteristics of eigenvalues and eigenvectors of
large systems based upon the statistical characteristics of
properties of individual structural components. This is
accomplished by the development of partial derivatives used in
a matrix chain as shown below

(1)
| . gHCE
{(l)d}\}z [ 9 (), x)J | [a(x, x)] _w_(_f‘a_p__ {(i)dp}
9 (k) :

[ @a 0, % J [‘i) J
v 5 (ky,m) (i)
! 9 (k, m)gyst 0 (p) { dp} (6-3)

where the presuperscript [(l) ] represents perturbations
in the system due to perturbations in the properties of
structural member, i.

The two large matrices in Equation (6-3)_ are developed from

. . a (k) 0 (m)
submatrices as shown. The two matrices RN and -
p
were developed in Section 4 and synthesized into
[a (ky,m)
9 (p)
elements are all oriented into system coordinates although the

matrix element numbering is oriented to the local coordinate
system.

in Subsections 4.1.5 and 4.2.6. The mass and stiffness

[B(A,x) ] 4 [B(A,x)

The components of the matrices 3(k)syst ,an a(m)syst],
are derived according to the methods developed in Section 3.
These matrix components are developed, however, according to
addresses in the system mass and stiffness matrices and it is
here where a procedure must be developed to make compatible
the partial derivatives in the two successive matrices of

Equation (6-3).

Before continuing with the compatibility deVelopment, consider
first the input and dimensional requirements. The vector {g&}
. . . . dx
represents derivatives of all the eigenvalues and eigen-
vector components of interest to the program user. The user
of VIDAP can select up to 100 eigenvalues and/or eigenvector




components in several combinations to be evaluated statistically.
The only restriction is that the selected components of any
eigenvector must be in either one or two groups. For example if
statistical characteristics of components of the jth eigenvector
are desired, they must be obtained using one of the following
options.

Eigenvector Option 1 Option 2 Option 3
( le\
%23 statistical statistical statistical
- characteristicsicharacteristics | characteristics
33 of all {xj} of one section of two sections
. of {x:}, i.e. of {x:} i.e.
< . > consetutive consetutive ele-
. elements ments xij’ x(i+l)j’
. Xy, Xos .
17 (l+]‘.)g . X(i+2)j' « e 0w
. . X(i+2)3’ and
. X5 X (k+1)57
. X(k+2)3r * ° °
X .
\ "nJ )

The number of rows and the notation of the rows in the matrix

()5 (n,x)
a(k'm)syst

correspond to the eigenvalue and eigenvector statistical data
requested by the user. Hence the matrix will not exceed 100
rows (although the number of degrees of freedom of the system
can far exceed this). The output of VIDAP will group together
the data from the same eigenvalue and eigenvector. That is

0 (k,m)

the successive rows of [(1)8(x,x) will have A;, Xj1i, X245/, « -
Aj’ le, X2j’ etc.

(i)
Each column of [ B(A'X) ] has a sinagle ind 4 i
5k, m) gle independent variable
' L o (k,m syst ‘

in all the partial derivatives whereas each row has a single
dependent variable. This is shown below.




~

oAy ahs iy
dkyg okr (s+1) 9K (s+2)
(1) dkyg akr(s+l) akr(s+2)
9 (A, x) -
azk'm;syst . . . (6-4)
BKj EKj 3>\j
dkps Ky (s+1) OKyp(s+2)
3le Bxlj Ble
dkyrg dkp (s+1) 9Kr(s+2)
L _
where the subscripts ( ), are in system coordinates.
The dependent variables in {(l)a(kr,m)} must correspond to
3 (p)
the independent variables in [(i)B(A X) the problen is
i, =
8(k’m)systJ
that the coordinates of the structural element may be found in a
number of different locations in the structural coordinates. For

example consider a beam element with end points at node 3 and
node 5 of a six-node system. Let each node have three restraints.
The symmetrical element and system matrices will be as shown -
in Figure 6-2.

The stiffnesses of the particular beam are not the only stiffnesses
located in the addresses shown in Figure 6-2. However, if this
beam joining nodes 3 and 5 is allowed to vary while all of the
rest of the system remains constant, then the derivatives associ-
ated with these addresses will be exclusively those of this
particular beam element.

If the address of a stiffness element is known in the system
stiffness matrix, the appropriate partial derivatives can be
developed according to the methods of Section 3. To do this an
accounting procedure must be used to find the locations of the
beam stiffness elements in the system stiffness matrix.

The procedure is as follows:

(1) The two nodes of the beam are treated in ascending
order, i.e. 3 comes before 5.




System Stiffness Matrix

Node Node ! Node f Node
-4====l ﬂ%&wﬂmz ! 3 ;

Node 1

T

P S Node 2

)
6&

Node 3

[K] = Symmetric | A

:
o]
g L
]
’ B l

Node 5

/

Location of member

stiffness in the ‘ Node 6
system stiffness
matrix ‘

.f.

Structural Member Stiffness Matrix (6 constraints)

Node Node
[ 3 > o
[ ey
Node 3
K] = l
[ Ylbeanm 4
Node 5
Sym. l
Figure 6-2 Beam Element Stiffness Locations




{2}y The number of unconstrained coordinates are counted
in all the nodes prior to the lowest node of the
beam. In this case there are 6 unconstrained coor-
dinates before node 3. The sum of these coordinates
gives the number used to determine the first row in the
system stiffness matrix.

(3) The number of unconstrained coordinates in the first
beam node are counted and this number is used to
establish the number of consecutive rows in the
stiffness matrix which are occupied by the stiffness
of this first node.

(4) The number of unconstrained coordinates between the
two beam nodes are counted to establish the row number
in the system matrix corresponding to the stiffnesses
of the second node of the beam.

{(5) The number of unconstrained coordinates in the second
beam node are counted and this number establishes the
consecutive rows in the stiffness matrix occupied by
the stiffnesses of the second beam node.

To implement this procedure two new matrices are introduced
to the analysis. These are called IKRJ and [?SJ and are strictly
internal to the program.

[KRJ and (KS] are square matrices having the same number of
rows and columns as there are unconstrained coordinates in the
member (in this case, the beam).

Each row of [KRJ has only a single number corresponding to a row
in the system stiffness matrix. Each column of [kKs] has only a
single number and these correspond to single columns in the
system stiffness matrix. The development and implementation of
these two matrices is as follows:

(a) From steps (3) and (5) above, count the number of
unconstrained coordinates in the beam and size EKRJ

accordingly
number of
[KR] = ‘ unconstrained
coordinates
¥

number of
unconstrained
—--coordinates o




From step (2) find the number of the row containing

the first member stiffness in the system matrix and
enter this number in the first row of [KEJE

r r r

T - B

-

From step (3) take the number of unconstrained

coordinates in the node and number the same number

consecutively.
b r r
r+l r+l r+l
r+2 r+2 r+2

(3), and (4) co

unt the total number

of rows in the system stiffness matrix preceeding
the stiffness of the second node of the member.
Let s be the row number corresponding to the first
row in the stiffness matrix of this second node.

(b)
¢ r
(=] -
(c)
of rows in [KR]
B
x
r+l
[KR] = r+2
(d) From steps (2),
—
r
r+l
[KR] = r+2
s
(e)
consecutively,
=
r
r+lv
[KR] = r+2
s
s+1
s+2

r b .
r+l r+l .
r+2 r+2 .
s S .

Complete [KR] by numbering the

s+1l, s+2, etc.
r r .
r+l r+l

r+2 r+2 .
s g .
s+1 s+1

s+2 5+2 .

remaining rows

°




Look now at [Kf]beam in Figure 6-3., If we move across the
first row, then start again at the diagonal and complete the
second row and so on we can form a column of stiffness elements
without duplication because of symmetry.

The partial derivatives in the matrix [g%g%Ei], Equation (4-3),

are ordered vertically in this way. Thus if we form a column
of indices from [KR] and [KS] by going across the rows of [KR]
and [KS] in the same way, we will have a set of indices for the
system coordinates which are in a column compatible with the
partial derivatives of the member stiffnesses. The column of
indices is shown below.

(KRll’ KSll A ( r, ¥ \ ( 7, 7 \
KR]_Z’ KS].Z r, r+l 7, 8
. r, r+2 7, 9
{ind.} = { ) = { . ? = | : ?
KR22, K822 r+l, r+l 8, 8
KRy3, KSyi r+l, r+2 8, 9
. r+l, r+3 8, 10
\ KRy KSpp \ s+2, s+2 ) \ 15, 15 )
N ~ g

Samples discussed on the
previous pages

The vector, {ind.}, provides the indices associated with k,g

and m,.o in computing the partial derivatives for eigenvalues and
eigenvectors in Equations (3-8), (3-9), (3-29), and (3-30).

This entire procedure is pictured in the flow diagram in Figure
6-4.

Because only the diagonal and one triangular half of the matrix
é-—-—[K] (see Equations (4-2,3)) are used in developing B(k)rl

14

9P 3 (
] 4 P)
some compensation must be made for the omitted derivatives before
the final matrix multiplication takes place. This is accomplished
by putting into the spaces occupied by the partial derivatives

having r = s, the sum 9( ) o ( ) i.e. Ohg oA
8( )l’“% 3( )srﬁ 3k + 3
ahs rs ks‘f
replaces ¥ .
rs
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In the case of the beam element in Figure 6-2, [KR] is

- =y

13 13 13 13 13 13
14 14 14 14 14 14

15 15 15 15 15 15

- i)

Sinfe fhe stiffness matrix is symmetrical, [KS] is the transpose
of |[KRj. :

— _ -
r r+l1 r+2 s s+1 s+2

r r+l r+2 s s+1 s+2
r r+l r+2 s s+1 s+2
r r+l r+2 s s+1 s+2

r r+l r+2 s+1 s+2

wn

or in the example

p—— sy

7 8 9 13 14 15
7 8 9 13 14 15
7 8 9 13 14 15
7 8 9 13 14 15

7 8 9 13 14 15

7 8 9 13 14 15

Note that [KR] and[KS] have the same dimensions as the member
stiffness matrix and contain all the address information about
the member stiffnesses in the system stiffness matrix.

With [KR] and [KS] it is now a relatively simple matter to
develop the proper partial derivatives for [(i)a(x x)
;3

S(R,m)syst}

"
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Thus the subscripts in the vector {ind.} are used in both

: (i)
orders. A typical row in f %%%Lé%j} would then appgear as
shown below. re
; OA A OAj A
Ori oy =2 i 4+ -2 . . .
9kjy dkjp 3kpy  dkyz  9dk3y

.
. A
The expression _ %
okyg
OA A
i i
IKrg dkgy

it

is symmetrical and thus

A 90X 43
22—, —J> is not symmetrical
dkyg dkyg

however, but the sum has been derived as shown in Equation

(3-30).




6.3 The Solution of Eigenvector Partial Derivatives

The previous section described how compatibility relations were
used for selecting the proper indices for eigenvalue/vector
partial derivatives. It was pointed out how these indices

were used with certain equations in Section 3 to compute and
order the partial derivatives. The purpose of this section

is to describe breifly the operations involved in the develop-
ment of partial derivatives for the eigenvectors. Whereas

the expressions for the eigenvalue partial derivatives, Equations
(3-8) and (3-9), are quite straightforward, those for the eigen-
vectors are more complex and involve considerable computation.
In fact, the eigenvector partial derivative computation involves
the largest single operation in the VIDAP program.

‘The eigenvector partial derivatives are developed in two steps:

(1) One element of the eigenvector is held fixed
while partial derivatives are developed for the
other elements relative to the fixed element.
The equations for partials with respect to
diagonal and off-diagonal elements in the stiff-
ness matrix are (from Section 3):

Pl 4 1-1 2 . . %

{3Xl } = [Flu] < xrl {Mxiu } "'Xri{éjru }) (6"5)
ak]:‘.'t:‘ X3 MXi
Biiu'} {3§7u _ [-—u]'l 2Xp i Xgj fp U ul|\*

+ }“ Fi __Ei_ii{Mxi } ~ XsiSjr*tXridyg
{akrs dkgy * ( X; Mxj4 J
(6-6)
(2) The partial derivatives developed in Step (1) are

modified to maintain constant generalized mass and
in so doing the fixed element is permitted to take
on a non-zero value. The expression is:

u u
9Xpj _ 0Xpi  Xpi §9%j (] {x: ) %
dkyg Okpg  Mj | 8kyg 1

*{-u} represents omission of the uth element, [gu] represents
omission of the uth row and column. In VIDAP u = 0, but can be
extended to operate for any value.

#%{ U} represents represents replacement of the uth element by
a zero. Hence a vector { Y} has n elements whereas { %} has n-1

elements.




In the interest of minimizing the computer storage, the
matrix [ —U], which is symmetrical, is formed from [K], [M],

LFi |

and A; and stored in a semi-band. The operation is shown in

Figure 6-5, [ﬁ;u], which in its symmetrical form is (n-1)x(n-1),

is also of order n-1 and thus capable of inversion.

The number of operations in the solution of Equation (6-5) or

—u
(6-6) can be minimized by returning [Fi ] to the left-hand side of
the equation and by solving the column of equations simultaneously

rather than by inverting [F&u]. A decomposition procedure
involving ‘banded matrices was selected for the solution of (6-5)
and (6-6). The decomposition method (Ref. 7) breaks[?iu]

into the product of three matrices.

(7] = [s1'[o)s] (6-7)

where [S] is an upper triangular matrix with unit diagonal
and [D] is a diagonal but not unitary matrix.

The decomposition procedure as outlined in Reference 7

permits the matrix FTuA to have negative numbers on the diagonal.
Other decomposition methods (Ref. 4 ) which use only the produce
LS]'[S] (with the diagonal non-unitary), incorporate a square-
root operation in the solution which will not work with the
negative diagonal elements.

The second step of the partial derivative development involves
no special operations and therefore does not require further
elaboration.




[F1°] =

ki Ky Kyg
kyy Koz Koy
0
kyy O O
f=
ky172mg
kyo=Aimys
[Fi] =
k _-A.m
nn i nn
ky1-2impg

Keu-1) (u-1) "*M™(u-1) (u-1)

Keu+1) (ue1) =AM (u+1) (u+l)

Figure 6-5

m11 0
m22 0
- )\i
L
ki kg3
kyg Koy
0 0
0 0o 0
ISP, 0 K-

K(u-1) (ur1)

Ku+1) (u+2)

Formation of Banded [ﬁ;u]
6-16

kl(u+1;7

Input [M],

[K], and A;

Form [F;]

Form [F; ]




6.4

Program Operation

The operation of VIDAP is summarized in the flowchart in Fig.

6=6 .
each

The following explanation summarizes the operations in
step and refers the reader to other sections of the report

for elaboration where necessary.

Step

Step

Step

Step

Step

1

As input to the program, the user provides the structural
stiffness matrix, the mass matrix, eigenvalues and eigen-
vectors of the modes of interest, the number of nodes in
the structure, the physical locations of the nodes, and a
list of coordinate constraints for each node.

2

The user requests statistics of the frequencies and modes
of interest. The total number of eigenvalue and eigen-
vector components can range upwards to 100.

3

Beam and plate property data are entered for the develop-
ment of the partial derivatives. Property covariance
matrices are input as 9 x 9 matrices. The node numbers
must be provided for each random member.

4

If an arbitrary stiffness matrix is used, a covariance
matrix for stiffness and mass properties must be developed
outside the program. The external development of this

(1)
[ E:k m] removes the need for the property covariance
r, (1)
matrix and the development of [ B(kr,m)J. [KR] and

0
[KS] must be computed externally in ég%s case and provided
as input data.

5

Program operation begins when the question is asked about
the type of element. If it is a beam or plate, the program
digests the data in Step 3 and proceeds to compute
(i)a(k m) }
r! in Step 6. If it is an arbitrary stiffness
3 (p)
matrix, the program bypasses Steps 6 and 7 and uses the
data provided in Step 4.
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Step

Step

Step

Step

6
With the data from Steps 1 and 3, the program develops

(l)a(k m) . .
r’ for the first random structural member.

3 (p)
7

Using data from Steps 1 and 3, the program develops [KR]
and KSJ for the first random structural member.

8

The user output request in Step 2, the specified eigenvalues
and_eigenvectors, the [K]gyg¢ and [M]gyst, and [kr] and
[KSJ are employed as described in Sectlons 6.2 and 6.3 to form

[(i)a (A, %)

J for the first random structural member.
9 (ky,m)

9

The matrices developed in Steps 6 and 8 and entered in
Steps 3 or 4 are multiplied together in the products shown
below to obtain the covariance matrix for the eigenvalues
and eigenvectors.

For a beam or plate

(1) (1) ( (1) ) (1)
= 3 (A, x) ;M
E:Ax 0 (ky,m) 3(p) 2:P
(:L) '
a(kr,m) (X x)

8(p) B(k ,m)

For an arbitrary stiffness matrix

(1) | (1) (i) (i) !
: Ej - 9 (A, x) E: v 9 (A ,x)

Ax d (ky,m) ky,m 3 (ky,m)

10

Step

The eigenvalue/vector covariance matrices resulting from
each random member are summed into a single covariance
matrix.




Step 11

The covariance matrix computed in Step 9 is stored, and
the procedure starting in Step 5 is repeated for each random
structural member.

Step 12

The covariance matrix resulting from Step 11 is used to
compute the standard deviations and the correlation matrix

of all the requested output data. Equation (2-10) is used

to transform standard deviations of eigenvalues into standard
deviations of frequencies. The final output contains mean
values and standard deviations of eigenvalues, frequencies,
and eigenvector components.



7.0 EXAMPLES AND VERIFICATION

7.1 Methodology

Verification of the linear statistical model can be made in two
ways which are quite independent of each other. The first method
involves developing partial derivatives numerically by perturbing

a sample problem and comparing these partial derivatives with

those computed within the program. The second method is to use

the Monte Carlo method to generate the statistics of a sample sys-
tem and to compare the results with the statistical characteristics
generated by VIDAP.

The above methods were used in evaluating two sample problems: a
simple longitudinal rod and an SII longitudinal vibration analysis
provided by the George C. Marshall Space Flight Center.*

The selection of the four degree-of-freedom longitudinal rod was
convenient because this problem had been thoroughly checked earlier
in the development of the J. H. Wiggins Company PASS I (Probabilis-
tic Analysis of Structural Systems) Program. Thus, the partial
derivatives developed by a proven program could be compared with
those developed by VIDAP. The SII longitudinal vibration problem
gave the opportunity to demonstrate VIDAP on a larger system and in
an area of interest to NASA.

7.2 Four Degree-of-Freedom Longitudinal Vibrations

The longitudinal rod studied in this example is shown below in
Fig. 7-1.

ARV LN
TONRSS

Figure 7-1 Four Degree-of-Freedom Longitudinal
Fixed-Fixed Rod

The mass and stiffness matrices are as follows. (Note that the
mass matrix is non-diagonal and is based upon the consistent mass
matrix approach described in Reference 8.) '

*Neither of these problems contain the plate or beam elements
discussed in Section 4 since the checkout of this section of
VIDAP was not successfully completed at the writing of this

report.

7-1




[ - 2

[x] -

0 0 -1 2

The stiffness matrix is composed of five stiffnesses, each re-
lating to one of the five finite elements shown in Fig. 7-1.

» -
k +k -k 0 0
102 2
-k k +k -k 0
[K} - 2 2 3 3
0 -k k +k -k
3 3 u y
0 0 -k k +k
4 L 5
k k_, kq, and k are assumed to be independent random
Varlaéles, each hav1ng a standard deviation, ¢ = .05 Masses are

assumed to be fixed.

The stiffnesses k,, k,, ... can be treated as the properties of

: . 9 (k,m)
the system. A matrix equivalent to [ L ] can be formed as
follows: 3 (p)




dk,, 1 1 0 0 0 0 0 0 0
dk,, 0 -1 0 0 0 0 0 0 0
ak, , o 0o 0o 0o 0o 0 0o o ol (ak)
dk, , c 0o 0 0o 0 0 0 0 o0 dk,
ak,, 0 1 1 0 0 0 0 0 0 dk,
dk, , 0 0o -1 0 0 0 0 0 0 dk,
ak,, s_ 0 0 0 0 0 0 0 0 0 dk $
i dk,, 0 0 1 1 0 0 0 0 0 0
dk,, 0 0 0 -1 0 0 0 0 0 0
dk, , 0 0 0 1 1 0 0 0 0 0
dm, , 0 0 0 0 0 0 0 0 0 \ 0 )
dm,, 0 0 0 0 0 0 0 0 0
dm,, 0 0 0 0 0 0 0 0 0
dm, 0 0 0 0 0 0 0 0 0
\ /
or
3 (k. .,m,.)
_ ijriii
{dklj,dmll} = [ TR } {dkz}
'3
00kyyrmys)
8(; ) has nine columns which make it compatible with
L

VIDAP.* Note that all the stiffness elements on and above the
diagonal are considered. However, only the diagonal mass elements
are considered because in the design of the program it was antici-
pated that most mass matrices would be diagonal, and the partial
derivative matrices could have small dimensions if mass partial
derivatives were restricted to the diagonal.

*VIDAP permits the input of nine random properties. The A(I,J)
9k 4pmy g

3k )
2

)
matrix (equivalent to ]) in step 18 of Appendix B

must always have nine columns even though, as in this case, all
nine are not necessary.




The covariance matrix for this system of five independent random
variables has the variances of the five successive k;"s down the
diagonal. The remaining four zeros on the diagonal account for

the remaining four random variables which are available in VIDAP
but not used in this problem.

(.05) 2 0 0 0 0 . 0
0 (.05)% 0 0 0 ) 0
0 0 (.05)2 0 0 . 0
l:}:k] = 0 0 0 (.05)?2 0 . 0
0 0 0 0 (.05) 72 . 0
0 0 0 0 0 0 0
s 9 columns 4~}‘

The [KR] matrix is (see Section 6.2)

[KR] =

| 4 4 4 4]

[KS] is the transpose of [KE].

The results of the VIDAP run are shown in Tables 7-1 and 7-2. The
statistics of the eigenvalues compare exactly with those of PASS I,
and the ratio of the standard deviation of the frequency to the
frequency is a constant as would be expected by a chain of uncorre-
lated stiffnesses (Reference 9 ). The statistics of the eigen-
vectors do not agree with the PASS I output because PASS I fixes
the first element in each eigenvector, thus making the standard
deviation of this element zero and changing the other elements in a .
manner discussed in Section 3.

The eigenvector partial derivative development in VIDAP is in two
steps, the first of which holds the first element of the eigen-
vector constant in a manner analogous to PASS I.

The equations leading to the partial derivatives in PASS I are
different (see Reference 1 )}, but the results should be the same.
The first-stage partial derivatives developed by VIDAP were com-
pared with those developed by PASS I, and the two programs did

7-4




indeed agree to four significant figures. The second stage of
the partial derivative development was then hand computed, and
the answers agreed with the VIDAP output.

A set of independent perturbations were made of elements in the
stiffness matrix to determine the range of linearity of the partial
derivatives. Figures 7-2,3,4 and 5 show per cent changes in spe-
cific eigenvector elements vs. per cent changes in the stiffness
element k,,. It is evident that, for this system at least, the as-
sumption of linearity is reasonable for changes in k,, of 10 to 20
per cent.
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7.3 S II Longitudinal Vibration

7.3.1 The Problem and VIDAP Solution

The mass and stiffness matrix data for the 26 degree-of-freedom

S II Longitudinal Vibration Analysis are presented in Table 7-3.
In this particular problem a section of the stiffness matrix is
considered uncertain. This section is located in the upper left-
hand corner and the relationships between the stiffnesses are
shown more specifically by the matrix below. k; and kp are
considered to be random variables.

kl "'kl 0 l ° .
~k7  kptkotky  -kj |
0 _k2 k2+k4 ° ° °

The VIDAP program can take any combination of rows and columns

in the stiffness and provide eigenvalue/vector statistics based
on the property statistics. In this problem the first three rows
and columns forming the 3 x 3 section is to be treated by VIDAP.
Looking at the stiffness matrix, the following matrix,

3 (ky) , can be developed.
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ak,,Y [1 o o o o o o o o0 ax, )
dk, , -1 0 0 0 0 0 0 0 0 dk,
dk ©o 0o 0 0 0 0 0 0 0 0
dk,, 1 1 0 0 0 0 0 0 0 0
{ dk, , ?_ 0 -1 0 0 0o 0 0 0 O ( 0 )
dk,, o 1 0 0 0 0 0 0 0 0
dm, ©o 0 0 0 0 0 0 0 0 0
dm, , o 0o 0 0 0 0 0 0 0 0
\am;,) |0 0 0o 0o 0o o o o o [ o0 J
or
{dk,s, dm,;} = P kigemis) | q, )
13’ 11 a(kg)

This procedure is exactly the same as that discussed in the
four degree-of-freedom system discussed in the previous section.

[:8 (kijr miji)
3 (kﬂ,)
Appendix B (Step 18) and must have nine columns.

] is equivalent to the A (I,J) matrix discribed in

The stiffnesses ky and k, are assumed to have the following mean
values and standard deviations.

ky = 143,900 in-1b.

9%; = .10k; = 14,390 in-1b.
ky = 1,695,000 in-1b,

Oky = .10k, = 169,500 in-1b.

ki and k, are also assumed to be statistically independent. The
9 x 9 covariance matrix is as follows:




- —
Okiz 0 0 0 0
2
0 0 .
0 sz o
[z] = 0 0 0 0 0
0 0 0 0 . 0]
0 0 0 0 . 0

L—~———~—9 columns ;{

The [KR] and [KS] matrix give the row indices and column
indices respectively of the rows and columns of the stiffness
matrix under consideration. Thus

1 1 1
[KR] = 2 2 2
3 3 3

and [KS] = [KR]'

Statistical data were requested for eigenvalues and eigen-
vectors 2-12 (the first eigenvalue is zero, a rigid body
mode) .

The statistics of the first four (1-4) and the last four (23-
26) elements of these eigenvectors were requested for compu-
tation and printout. The statistical results of the VIDAP
run are presented in Tables 7-4, 5, and 6.

Several observations can be made from these results which
are significant in the analysis of the statistical character-
istics of a system.

(1) The modes which have the greatest uncertainty in

the eigenvalue or frequency also have the greatest
uncertainty in the eigenvector components. This is
substantiated also by an examination of the partial
derivatives. Note in Equation (3-30) that the partial
derivative of an eigenvector component with respect

to a stiffness element contains the expression for

the partial derivative of the eigenvalue with respect




(2)

(3)

to the stiffness. The dependency is not one to one,

but generally an increase in __1 will lead to an

increase in {axi } Ikyg
okygt -

Large statistical correlations exist between all com-
binations of eigenvalues and eigenvector components.
This indicates that in using the statistical char-
acteristics of the modes and frequencies one must
consider covariance.

Percentage variations in modal characteristics are
generally smaller than the percentage variations in

the stiffnesses. This is not a fixed rule because the
uncertainty in the system will grow as more stiffness
elements are allowed to become random. However previous
observations of various dynamic systems along with the
two in this report generally support the trend of

modal uncertainty being smaller than stiffness
uncertainty.
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TABLE 7-5 Eigenvector Statistics of the 5 IT
Longitudinal Vibration Model (VIDAP)

VECTOR EIGENVECTOR STANDARD DEVIATION
X{ 2¢ 1) 1.99119650E=02 4,51323386E=05
Xt 2¢ 2) ) e6T7037910E=p2 1049444896E=04
X( 2. 3 1.466252600E<02 4,37620067E=05
At 2¢  4) 1,45217680E=02 4,19744743E=05
X{ 24 23) =2,00814270E=02 3.59035882E=05
X( 24 24) 7,84932150E-03 2¢64354296E«05
X( Pe 295) 1¢92997130E=p>2 2:46352988F=03
X{ 29 2Ah) 2.492489)0E=02 2,65433067E~05
AL 3s 1) 2:.98029150E=02 9:,32199678E=04¢
Xt 3. 2) 2019435244002 4.65513361E=04¢
A 3, 3 1,74071270E=02 6o7544978lE=04¢
X( 3« &) 1,71816200E=0? 6,6697140BE=06¢
X 3¢ 23) =7011829650E=02 4 19887636E=04%
X( 3¢ 264) =2.12488950E-03 1:79054532E=04
X({ 3, 25) 296336370E=02 1.19700142E=0%
X( 3¢ 2b) 4,69862580E«02 1:441351076E=04
At 6e 1) 3¢87601210E=02 2:35031101E=04%
X( Gy 2) 2,49696110E=n2 1,36543221Ex03
X{ 4y 3) 1 7/8767800E=0> S¢416642603E=04
X( 4s &) 1475249800E=n? 5.36034192E=04
X( 44 23 3,87443620E=n2 4,40657942E=0%
L{ 49 24) =2,62685030E=-0? 2:.71161228E~04¢
X( 49 25) 4,33003400b=07 2:35774197E=0¢%
X( 4o 26) 8.63197640E=02 1080160359E=04
X S5¢ 1) 1.,42735490E=0) 2,08507293E=02
X( 59 2) 4¢90707370E=02 Le65646990E~02
A B¢  3) 2e02026560)E=02 9:8649936¢43E=03
K({ S, &) 1,87810140E-02 9,57504289E=03
X{ 59 23) 1.43928740E=03 T.80050527E=03
K{( 5s 2%) =7 ,40163090E=03 4,1484245BE=03
K{ 5y 25) =1.32010330E=02 3,36758459E=03
X{ 5, 25) =1e63350600E=01 2:8976¢3809E=03
AL 69 1) 2:63405500E«03 1,26071891E=04
A{ 6y 2y B8,43030870E=n% 3,55212386Ea0%
X{ B¢ 3 3,20195930E=«04 1.60837705E=0¢
K( 63 4) 2¢94456390E-04 1.53613335E=04%
X( 6He 23) «3.65282150E-03 1s07470930E=04%
X He 24) “He74285120E=04 2e02724795E=053
AL 69 25) =1.10942780E=0% 1:94043554E=05
A Be 25y =2.33248760E~03 1.67083025BE=05

~J]
i

22




TABLE 7-5 (Cont'd)
£t 7e 1y 1.77708750E<06 2.25349550E=06
X{ Ty 2) 3,09203500E=05 6.26096913E=05
A Te 3 2.780%3030E=05 3,40022325E=05
X{ 79 4) 1440322560E«05% 3.267806403E=05
X({ Ts 23) =3,42423]150E=03 2,23692801E-05
X( Ty 26) =7.56410330E=0¢ 3.76190536E=06
X ( Te 29} 1.,459668380FEe05% 8.021807267FE=08
X{ 7y 2h) =9,29588140E=-06 9.82879623E=08
AL By 1) 199809)180E=01 5.95195507E-03
X( 8y 2) 56 74847880E=03 7¢90019566E=03.
X{ B¢ 3) =1.21158860E=p2 3.38517062FE=03
X({ 8y 4) =].29795150E=0? 3.14906080E=03
X({ By 23) 2.45007720E=04 2:.56435013FE=03
X( By 24) 3,47635650E=0n3 1624250058E=03
X({ Be¢ 25) “4,70085400E=n? 9:54851531E=«06
X( B8y 26) 1.3063%9670E=0] 8.61961569E=04
X{ 9s 1) 1,72781740E-01 1.,864668566Ew02
X{ 9¢ 2) “5,94119040E=02 2.253206420E-03
X( 9¢ 3 =2014151110E=p> 2:70118938E=03
X{ 9¢ &) =1e95347700E=0? 2:70599884E-03
X( 9y 23) 1¢89128640FE=03 2:41301357E=03
X( 9¢ 24) 4,30014770E=03 1,28423464E=03
X( 9y 25) 4¢53059150E=02 1606013944E=03
X{ 95 26) =5,13440040E=02 9.956582212E=04%
X¢( 10s 1) 1667803140E=073 2.36765705E=05
X( 10s 2) =B,66213450E=064 2e62196858E=03
K¢ 100 3 =1,.48940040E=04 6,35678035E«05
X{ 10e &) =1e13700690E=04 6¢21099072E=05
X( 10¢ 23) =1,4B8)189970E=01 5,27091359E«05
A( 10y 26) “T7.,88292670E=0¢ 2637436169E=05
X( 109 25) 165619960E=n4 1,778755%28E=05
XK{ 109 20) =1,47372160E=04 1673078416E=05
AL 11e 1) 4,46285540E=04 7e32132695E=06
X{ 11s 2) =3,58626050E=04 6¢37497282E=06
X( 11s 3) 2,70387150E-05 3.22479882E=05
X( 1ls 4) 4,58488800E=05 3¢15649402E~05
X{ 11y 23) “0,902646940E-03 2:.73705224E=«05
K( 11s 24) =46081363340E=04 1,10371050E=05
A 11y 23) =4,21219610E=05 7e37019219E=06
X( 11s 25) 2. 15964250E=05 To46]144042E=06
A 12s 1) 1,33145450E=03 3,16758811E=05
X{ 12y 2) “1.45004420E=03 1.28259106E=053
A( 12¢ 3 427686250804 1,61995737E=-04
XK( 12, &) 5,18739880E-04 1.60750684E=-0%
X( 12s 23) =4,09504890Ew0? 1.47990669E=04
At 125 24) =1e55037420E=03 6.60957292E=05
X{ 125 25 »3,51849250E=04 4,65%7680821E=05
X{ 12s 28) 1¢82660060E=04 4e80935879E=03
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7.3.2 Checkout of VIDAP Partial Derivatives

A number of perturbation runs were made on the § II Longitudinal
Vibration model. In each case kjj, kjy,, k21, and kg in various

combinations were perturbed and partla% derivatives were numeri-

cally developed to compare with those computed by VIDAP. Several

typical partial derivatives are plotted in Figures 7-6 through 7-15.

The partial derivative checks for eigenvalues were excellent,
but those for eigenvector components were not altogether satis-
factory. It appears that numerical roundoff of the eigenvectors
coupled with peculiarities of the problem caused the perturbed
model to produce partial derivatives which frequently varied
significantly from the VIDAP computed partial derivatives.

Basic observations are:

(1) The larger partial derivatives (those which are of
the greatest significance) can be computed the most
accurately. The smaller partials wander and may
even have reversals of sign.

(2) Eigenvectors which have only a few dominant components,
such as mode 9, produce reasonably accurate partial
derivatives for those components.

The S II Longitudinal Vibrational Model appeared to have some
peculiarities when perturbed which were difficult to explain.
Occasionally adjoining eigenvectors would alter characteristics
significantly when the roots became close. The partial deri-
vatives of the first several eigenvectors did not agree at all
with the computed partial derivatives. However the small value
of these partial derivatives (regardless of accuracy) resulted
in small uncertainties for the components and the resulting
statistics are of the same small magnitude shown in the Monte
Carlo check to be discussed in the next section.
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7.3.3 Monte Carlo Check

The purpose of this Monte Carlo analysis is to offer a completely
independent statistical check of the linear statistical model.

The procedure used in this analysis is described in the flow
diagram in Figure 7-16. In the analysis the procedure was
repeated 30 times. Both the estimated mean and standard deviation
of a Monte Carlo analysis converge at the rate of 1//N. Hence

a 60-run analysis would have increased the accuracy by V2.

Any statistical analysis using a finite sample only results in
estimates of true means and variances. Hence confidence limits
or bounds are included to establish the ranges within which the
true means and standard deviations are most likely to fall.

The stiffness matrix with its dependency upon kj and ky is shown
at the beginning of Section 7.3.1. Using the procedure described
in Figure 7-16, the following matrix relation was developed to
relate stiffness matrix elements to the random stiffnesses kj

and kj.

(k1) [ o o o] (Ei + zlokl\
k12 -1 0 0 0 J ky, + 220k, >
ko1 -1 0 0 0 k3

< ka2 y=| 1 1 1 0 | k4 )
ko3 o -1 0 0
k3o 0o -1 0 0

\ k33) L0 1 0 1|

]i + ZlOkl

_ | 3(ki1s ky2s . ;] k2 + 220k,
dkys ks o o . ll k3
| K4

where z, and z, are independent normally distributed random
variables with zero means and standard deviations equal to one.




Input 1:

Statistical distribution
for each random
stiffness: kl and ko

\

Select random values
of k1 and ko from
each distribution

y

Input 2:

Stiffness matrix
with vacancies
for random

Insert kj and kj into

B(kll, k12 eo)
a(kl, k21 -...)

Repeat
many
times

values and compute remaining
values in stiffness
matrix
\
Input 3: Calculate eigenvalues

Mass matrix

and eigenvectors
of the system

Figure 7-16

Output:

Summarize and print-
out mean values and
variances of eigen-
values and eigenvectors

Procedure

summary of Monte Carlo




The results of the check are summarized in Tables 7-7 and 7-8.
Note that the frequency table shows very excellent correlation
between the VIDAP linear statistical model and the Monte Carlo.
This should be expected since the eigenvalues are relatively
well-behaved and the partial derivatives for eigenvalues are
simple and are not as easily influenced by accumulative round-
off.

Although Monte Carlo results are not shown for eigenvector com-
ponents of modes 2, 3, 4, 6, 10, 11, and 12 it was confirmed
that these modes, which have small deviations in the frequencies,
also have small deviations in the eigenvector components.

The mean values in Table 7-8 show excellent agreement, but the
standard deviations show only fair agreement. However, except
in the case of x(5,2), the standard deviations predicted by
VIDAP are of the same magnitude. The lack of finer accuracy
can be due to the following factors:

(1) nonlinearity in the eigenvector derivatives
(2) roundoff error , '

(3) possible unusual behavior of the eigenvectors
(4) the limited size of the Monte Carlo.

This project ended before the above areas could be investigated,
but the influences of these effects should be thoroughly
evaluated before VIDAP is put into general operation.
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TABLE 7-8 A Comparison of VIDAP and Monte Carlo Computed
Statistics of Eigenvector Components (S II
Longitudinal Vibration)

Vector Mean Standard Deviation
Component Monte +95% Monte 95% Confidence Bounds
VIDAP |Carlo Conf. Int.j] VIDAP jCarloc Lower B. Upper B.

x(5,1) <142 .146 .006 .021 .016 .013 | .021
x(5,2) .049 .049 .001 017 .002 .002 .003
x(5,3) .020 .020 .001 .010 .002 .002 .003
x(5,4) .019 .018 .001 .010 .002 .002 .003
x(5,23) .001 .001 .000 .008 .000 .000 .000
x(5,24) -.,007 | -.007 .000 .004 .001 .001 .001
x(5,25) -.,013 |-.014 .001 .003 .003 | .002 .004
x(5,26) -.163 |-.162 .002 .003 .006 .005 .008
x(8,1) .200 .197 .004 .006 .012 .009 .016
x(8,2) .006 .004 .003 .008 .009 .007 .012
x(8,3) -.012 |-.013 .001 .003 .003 .002 .004
x(8,4) -.013 |-.013 .001 .003 .003 .002 .004
x(8,23) .000 .000 .000 .003 .000 .000 .000
x(8,24) .003 .004 .000 .001 .001 .001 .000
x(8,25) ~.047 | -.046 .002 .001 .005 .004 .007
x(8,26) 131 .132 .002 .001 .005 .004 .007
x(9,1) 173 .170 .010 .018 .027 .021 .036
x(9,2) -.059 | -.059 .001 .002 .002 .002 .003
x(9,3) ~-.021 | -.021 .001 .003 .002 .002 .003
x(9,4) -.020 | -.019 | .001 .003 .002 .002 .003
%x(9,23) .002 .002 .000 .002 001 .001 .001
x(9,24) .004 004 .000 001 .000 .000 .000
x{9,25) .005 .005 .002 .001 . 005 004 007
x(9,26) -.051 -.052 .004 .001 .010 .008 .011




8,0  CONCLUSIONS AND RECOMMENDATIONS

The following conclusions can be made with regard to the
bending vibration data accuracy project and the development
of VIDAP:

(1) a linear statistical model can be used to develop
eigenvalue/vector statistics from stiffness and
mass matrix uncertainties.

(2) a very large system can be treated statistically
without matrix size requirements which exceed
the size of the system.

(3) the statistical computation is faster than an
eigenvalue computation since the most complex
operation is an (n-1) simultaneous equation
solution which, in turn, is faster than a matrix
inversion. '

(4) beam and plate elements can be modeled statistically
and these characteristics can be used to compute
eigenvalue/vector statistical characteristics.

(5) large uncertainties of eigenvalues indicate large
uncertainties of eigenvectors. 1In seeking eigen-
vectors with large uncertainties, VIDAP can be
used twice in sequence: first, to compute only
eigenvalue statistics of the system to locate
uncertainty, and second, to compute eigenvector
statistics of those modes indicated by the first
run. :

(6) only eigenvectors of modes of interest are needed
in the computation.

(7) eigenvector roundoff errors and nonlinearities
have a very strong influence on the accuracy of
the eigenvector statistics.

The following recommendations are made with regard to future
research and development.of VIDAP and other structural dynamic
statistical models:

(1) the effect of roundoff should be thoroughly evalu-
ated and an indicator of the eigenvalue statistics
accuracy should be developed. This indicator could




(3)

(4)

(5)

be included with a subroutine which would iterate
the eigenvectors to the degree of accuracy
reguired.

An investigation should be made of the application
of the VIDAP partial derivatives to other applic-
ations such as optimization and improvement of
stiffness matrices by incorporation of test results.

Second derivatives of the eigenvalues should be
developed to use as indicators which would estab-
lish when nonlinearity is significant.

"A statistical response model should be developed

using the statistics of the eigenvectors.

The assumption of statistical independence of
adjoining beam elements and adjoining plate elements
is convenient but not always valid. A model should
be developed to permit statistical correlation
between the properties of adjoining elements.
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APPENDIX A
NOMENCLATURE

A.l1 EIGENVALUE-EIGENVECTOR PARTIAL DERIVATIVE DEVELOPMENT

DEFINITIONS

X; -

e
-
0
H
=
[
{

jth eigenvector

uth component of jth eigenvector

equivalent to x(i,u) in computer output

jth eigenvalue

stiffness matrix
th . ,
(rs) component of the stiffness matrix

mass matrix

h

(rs)t component of the mass matrix

generalized mass; Xj

Mx;, a scalar quantity

vector formed from the product Mxi with the

uth element removed

the matrix, K—AiM

the matrix F. reduced by removal of the

, i
uth row and uth column.

vector of length n-1 with zero elements in
every location except r where the element is
equal to 1. If u is less than r, the location
is at r-l; and if u=r, the vector is a zero
vector.




A.2

A.3 GENERAL MATRIX

- the u

a vector of partial derivatives of the xj
elgenvector with respect to the k element
in the stiffness matrix.

Bxi :

ok

th

element of the vector {
rs

O0X.

the wvector L
i

3Xui

} reduced by removalvof the

element,

rs

COORDINATE DEFINITIONS (SEE FIGURES 4-1 and 4-4)

structural member axes

- system coordinate orientation

- deflections in the member Xy, Yn, Zpy
dlrecgﬁons respectively at
the i node.

- rotations about the member Xm, Ym axes

respectively at the ith noge

AND VECTOR DEFINITIONS

- matrix
- transpose of a matrix

-~ yvector

in size by removal of the

- a matrix reduged
tﬁ %ﬁ column

row and u

A=-2




—1
{ } - atgectmr reduced in size by removal of the
u element.

u
{ } - a vector with the uth element set equal
to zero v

0
—J
I

an upper triangular matrix used in a
decomposition operation

a diagonal matrix used in a decomposition
operation

—=
(v}
iy
i

matrices of indices used to develop sets
of compatible partial derivatives (see
Section 6.2)

[x2], [xs]

A.4 STATISTICAL DEFINITIONS

() - mean value of ( )
0 - standard deviation
Cov (Xi’ Xj) - govariance 6f X and xj
pij - correlation coefficients between variables
X5 and xj

o Sovixyxy)

A.5 DEFINITIONS USED IN THE DEVELOPMENT OF BEAM AND PLATE
STIFFNESS MATRICES

Beam

E - Young's modulus of elasticity

A - Cross—sectional area of a beam element




G

P
Plate
A
LaB
X@Br YQB
T
p

length of the beam element
modulus of rigidity

beam cross-sectional polar moment of inertia
about the X axis

Poisson's ratio

beam cross-sectional moments of inertia about

Y, and Z, axes respectively

beam cross-sectional shear factors about the
Yo and Zm axes respectively

12 EI
3

GA SF L2
3

12 EI2
GA SF2 L2

coordinate rotation matrix (3 x 3)

rotation matrix for a beam (12 x 12)

jth physical property

surface area (one side of the plate)

distance between nodes o and B

x and v distances between nodes o and B

i el
in Xm, Ym’ 2 coordinates

total thickness of the plate

A-4




T - thickness of the core of the plate
A - effective shear web area

G - modulus of rigidity of the cére

v - Poisson's ratio of the face sheets

E - Young's modulus of the face sheets

pj - jth physical property
[Kb— - stiffness matrix for plate bending matrix
J
FKn- - plate stiffness matrix due to normal stresses
PK 1 - plate stiffness matrix due to out-of-plane
- S- shear
'k ] - plate stiffness matrix due to in-plane shear
L W]
[K1]r[K2]I[K3]'[Ku- - component matrices of the plate stiffness
- matrix
R - rotation matrix for a plate (15 x 18)
plate
T p—
2(1-v2)a
_1-v
A
14y
A, = ==




APPENDIX B
USER’S MANUAL

B.1l INTRODUCTION

VIDAP is written in seven sections consisting of a main
control program and six overlays. These sections are
described briefly below:

OVERLAY (VIDAP, 0, 0) is the main program and reads in
the run identification, matrix dimension, matrix band-
width, control flags, node constraints, user's output
selection, and calls the various overlays as needed.

OVERLAY (VIDAP, 1, 0) is used to load the mass matrix,
stiffness matrix, eigenvalues, and eigenvectors onto
magnetic tape for use by other OVERLAY sections.

OVERLAY (VIDAP, 2, 0) reads in the geometry data or the
matrix of partial derivatives of stiffness and mass with

(i) 5.
respect to properties, %%gfml . If the geometry data

(i)
is entered, it computes [ %%Efﬂl]. In either case
p

(1) x,m)] . . T
() is stored on tape. The covariance matrix is
also entered by this section of the program.

OVERLAY (VIDAP, 3, 0) determines the location of the
related elements in the stiffness matrix for the selected
section of the model under investigation from the con-

. )y k,m] .
straint and node data. If ) is entered, the

element positions in the stiffness matrix are entered by
this section.

OVERLAY (VIDAP, 4, 0) computes the partial derivatives of
the eigenvalues-vectors with respect to stiffness and mass,

9 (h,x)
[?(kr,HUJ , stores them on tape for later processing. These
partials may be printed as output if desired.

OVERLAY (VIDAP, 5, 0) computes the product of the partial
derivative matrices and the covariance matrix for each
structural element and sums them in preparation for
computing the final answers. This section outputs the
partial derivatives if requested.




OVERLAY (VIDAP, 6, 0) computes the correlation matrix
and standard deviations and outputs the answers.

MASS AND STIFFNESS MATRIX

The mass and stiffness matrices must be symmetrical,
with a maximum bandwidth of 80 and a maximum dimension
of 300. They are entered in a rectangular configuration
as shown below:

First column is the

matrix diagonal
~—Bandwidth —»l \|<——Bandwidth—>
BRI IO I T 70 . bobalaiiatie s
sa el olie BLTLEL e

------

I RATCA RN Rk 11112 03 e {Es]

Data entered & stored in this configuration

CONTROL FLAGS

The control flags give the options of: (1) entering the
partial derivatives of stiffness and mass with respect to
properties or computing these partials, (2) printing-out
the partial derivatives of eigenvalues-eigenvectors with
respect to stiffness and mass and partial derivatives of
stiffness and mass with respect to properties.




CONSTRAINTS

The node number and constraints must be entered for
each node having constraints. The node numbers may
vary from 1 to 100 with a maximum of 100 nodes. Each
node has six degrees of freedom unless constrained.
(NOTE: the program can handle a maximum of 300 d.o.f.)

OUTPUT SELECTION

A maximum of 100 elements may be selected for the output.
This may be a combination of eigenvalues and selected
elements from the associated eigenvectors, or eigen-
values alone. The program checks to see if the mode (1
to 300) has been requested. If so, the associated eigen-
value becomes one of the output elements. The program
will then check the two start and stop numbers for the
associated eigenvector. If the first start number is
anything other than 0, it will determine the start and
stop element for the first string of eigenvector elements
associated with this mode. It will then check the second
start; and if it is not 0, it will determine the start
and stop elements for the second string of eigenvector
elements associated with this mode.

Example:

Statistics are desired for the second mode (second
eigenvalue) and elements 1 through 4 and 23 through
24, (Note that only two strings of contiguous
elements are allowed per mode).

The output would give:

Mode Eigenvalue Standard Deviation Freq. S.D.
2 XX XX XX XX
Vector Eigenvector Standard Deviation
x(2,1) XX XX
x(2,2) XX XX
x(2,3) XX XX
x(2,4) : XX XX
x(2,23) XX XX
x(2,24) XX XX

INPUT-QUTPUT TAPES

Logical 1, 2, 3, 4, 9, and 10 are the Fortran tape units
required for scratch tapes (binary format). Logical 5
is the input (card reader) and Logical 6 is the output
(printer).




CARD PREPARATION

l.

Case Heading (16A5)

This card may contain any alphanumeric character in
columns 1-80 for problem identification.

N, KBW (218)

1 8 9 16
N KBW {

Column 1-8 - Integer must be right justified

N = mass and stiffness matrix dimension, eigenvector
length

Column 9-16 - Integer must be right justified

KBW = mass and stiffness matrix bandwidth dimension
IFLAG JEFLAG (2I8)

1 8 9 16 ,
IFLAG | JFLAG ] J;

Column 1-8 - Integer must be right justified

no printout of partial derivatives

IFLAG = 0
= printout of all partial derivatives

IFLAG

-
I

Column 9-16 - Integer must be right’ justified

JFLAG = 0 = compute partial derivatives with
respect to property
JFLAG = 1 = input partial derivatives with
respect to property
LOT (18)
1 8
[ LOT ‘

Column 1-8 - Integer must be right justified

LOT = node number of node with constraints (1 to 100
acceptable)

LOT = 0 or negative number is a sentinal to denote
that all constraints have been entered




6.

KONSTR (l),...,KONSTR (6}, (618}, (For above node number)

1 8 9 ie 17 2 25 3 33 40 41 48

4 2
KONSTR 1 { KONSTR 2 | KONSTR 3 | KONSTR 4 | KONSTR 5 | KONSTR 6

Column 1-8 - Integer must be right justified

no constraint for first d.o.f.*

KONSTR = 0
= constraint for first degree-of-freedom

KONSTR

et
hu

Column 9-16 - Integer must be right justified

no constraint for second d.o.f.

KONSTR = 0
= constraint for second d.o.f.

KONSTR

i

Column 17-24 - Integer must be right justified

no constraint for third d.o.f.

KONSTR = 0
= constraint for third d.o.f.

KONSTR

Column 25-32 - Integer must be right justified

no constraint for fourth d.o.f.

KONSTR =
1 = constraint for fourth d.o.f.

KONSTR

Column 33-40 - Integer must be right justified

no constraint for fifth d.o.f.
constraint for fifth d.o.f.

KONSTR
KONSTR

Column 41-48 - Integer must be right justified

no constraint for sixth d.o.f.

KONSTR = 0
= constraint for sixth d.o.f.

KONSTR =
NOTE: Only LOT (Node Number) and constraints for LOT
need to be entered for those nodes with constraints.
The program assumes that the only nodes with con-
straints are those where constraint data is
entered. If LOT is zero or negative, this signals
the program that all constraints have been entered.
Example: if the system has no constraints, only
one (1) card would be required: LOT = zero or
negative. LOT (Nodes) must not exceed one hundred
(100) in number or level.

*The order of the six degrees of freedom is as shown in
Figure 4-1

KODE, KK (218) (Output select cards)

1 8 9 16
KODE KK b




Column 1-8 - Integer must be right justified

KODE = (0 = continue to read select values
KODE = -1 = all selected mode numbers entered

Column 9-16 - Integer must be right justified

KK = number of mode selected; i.e., 1 = first mode,
2 = second mode, etc. KK may vary from 1 to N
(Number of degrees-of-freedom of the system).
Maximum d.o.f. acceptable by the program is 300.

LGO (1), LGO (2), LSTOP (1), LSTOP (2), (418)
1 8 9 16 17 24 25 32
LGO (1) LGO (2) LSTOP (1) LSTOP (2) %

Column 1-8 - Integer must be right justified

i

number of element for start of first
selected section of vector (x)

LGO (1)

Column 9-16 - Integer must be right justified

number of element for start of second
selected section of vector (x)

LGO (2)

Column 17-24 - Integer must be right justified

LSTOP (1) = number of element for last value of
first selected section of vector (x)

Column 25-32 - Integer must be right justified

LSTOP (2) = number of element for last value of
second selected section of vector (x)

The output select cards establish the amount and order of
printout of the eigenvalue and eigenvector statistics as
shown in the introduction of the appendix. The output will
always label the statistical data but does not label the
partial derivatives which are listed in the output as
"PARTIAL DERIVATIVES FOR THE EIGENVALUES-EIGENVECTORS
(ELEMENT )." The order of these partial derivatives in
the printout are established by LGO (1), LGO (2), etc.

and an example of the output is shown below.

Example: LGO (1) = 3 LGO (2)

= 12
LSTOP (1) = 9 LSTOP (2) =

15

The following data would be saved for computation of
statistics from the partial derivative matrix (for Mode 5):




KK drg dkg .
’ aky1 3ky1y
1Go (1) °¥35 9x35 ceen
dkyy k12
X ox
LSTOP (l) 95 95 o @ @ ©
k11 ki2
ox X
16O (2) 12,5 12,5 ceos
ki1 ky2
X 90X
LSTOP (2) 15I5 :LSI5 ° 6 0 &

doky1 okyo

e e

+

partials for

consect. eigen-
vector elements
x35 through xg5

e

/5.

partials for
consect. eigen~
vector elements

X12'5 thru X15,5

5 ® o

5 35
myy omy 9
3X35 3X35
mjj 322

3X95 3X95
myy ompy
9%12.5 9%q
mj 3 ompy
0Xy5 5 0Ky5
Bmll 8m22

If both LGO's = 0, only the partial derivative of the eigen-

value will be computed and saved (KK).

Once the partials for an eigenvalue and associated eigenvector
elements have been listed, the procedure repeats for the next
eigenvalue and eigenvector elements as specified by the output

select cards.

The order of printout discussed above and demonstrated in the
example is also used in the format of the correlation matrix.
To demonstrate this consider a very simple output selection such

as that below.




Sample Output Select Cards

KODE

LGO (1), LGO (2), LsTOP (1), LSTOP (2)

1 4 2 5 5}

KODE

LGO (1), LGO (2), LSTOP (1), LSTOP (2)

2 5 3 6 j

KODE

= i

The resulting correlation matrix will have the dimension of
10 x 10 with the elements down the column and across the
rows in the following order:

31 ‘ Correlation Matrix




Note that the eigenvector components contain the mode
number in the second subscript. This order is reversed in
the final output. Thus,

eigenvector element number

x (3 2{ :j}
N/

mode
number

M (Mass Matrix Data) (5E16.8)

1 13 16 17 29 32 33 45 48 49 61 64 65 77 80

K E SK E SK B SK E SK E

The mass matrix* is entered in the E Format with decimal
point between columns 4 and 5, 20 and 21, 36 and 37, 52 and
53, and 68 and 69.

Each new row in the matrix must start on a new card.

Example: KBW = 8 (Bandwidth of 8)

M
Card 1 5 values 11’ Mlz’ M13’

16’ Ml7' M18'

5 values M22, M23, M24, M25, M26
*The mass matrix must be in consistent units, the
geometry data in inches, the stiffness matrix in
in-1bs, and the mass will be pounds weight.

M M

14" 715
Blank, Blank

Card 2 3 values M

Card 3

K (Stiffness Matrix Data) (5E16.8)

Same as Mass Matrix Setup

LAMBDA, CODE (2E16.8) *
1 13 16 17 29 32 33
E ‘ E {

Same Format as 8 and 9
LAMBDA = Eigenvalue
CODE = 0 = continue

CODE = -1 = No further modes to enter

*See l1ll. on next page




1.

12.

(X} {(Eigenvector) (5E16.8) %

P |

Same format and rules as used in 8 and 9

*Data in steps 10 and 11 are entered in pairs; i.e., the

eigenvalue and the associated eigenvector are paired to-
gether sequentially. No eigenvalue can be entered with-

out an eigenvector and vice versa.

WEIG1 (I), WEIG2(I), WEIG3(I), THELl(I), THE2(I), THE3(I)

1 8 9 le 17 24 25 32 33 40 41 48

(6F8.0)

WEIGL(I) | WEIG2(I) | WEIG3(I) | THEL(I) | THE2(I) | THE3(I)

Y

3 cards required - arranged in ascending node order
Decimal point right justified unless entered

Column 1-8 **

WEIG1 (I) = Weight associated with first degree-of-

freedom of selected element for the (I)th node.

Column 9-16

WEIG2(I) = Weight associated with second d.o.f.

Column 17~24

WEIG3(I) = Weight associated with third d.o.f.

Column 25-32

THE1 (I) = Moment of Inertia associated with fourth d.o.f.

Column 33-40

THE2(I) = Moment of Inertia associated with fifth d.o.f.

Column 41-48

THE3 (I)

**Weights are entered in pounds and divided by 386.4 within
the program. Moments of inertia must be entered in termg
of mass-in? where mass is weight divided by 386.4 in/sec”.

Moment of Inertia associated with sixth d.o.f.




14.

15a.

cov (5E16.8) (See examples in Sections 5 and 7 for
covariance matrix development)
Same Format as 8

Covariance Matrix (9 x 9)

First card: COVll, covlz, COV13, COV14, COV15
Se?ond card: COV16, COV17, COV18, COV19
Third card: COV21, COV22, COV23, COV24, COV25
et cetera ° ° ° ° °

Eighteenth card: COV96, COV97, COV98, COV99,

JNODE, ITYPE, X1, X2, X3 (2I8, 3F8.0) (3 cards (nodes) required)

1 8 9 16 17 24 25 32 33 40
JNODE | ITYPE X1 X2 X3 #j

Column 1-8 - Integer must be right justified
JNODE = Node ID number (Node numbers must be in
ascending order, i.e. JNODE of card 1 < JNODE
card 2 < JNODE card 3)

Column 9-16 - Integer must be right justified

1l - Beam Element
2 - Plate Element

ITYPE
ITYPE

o

Column 17-24 - Decimal right justified unless punched

X1 = Coordinate value of X for JNODE

Column 25-32 - Decimal right justified unless punched

X2 = Coordinate value of Y for JNODE

Column 33-40 - Decimal right justified unless punched

X3 = Coordinate value of Z for JINODE

Bar Element

E, PR, AREA, XJ, XIl, XI2, SF2, SF3 (8F8.0)
1 8 9 16 17 24 25 32 33 40 41 48 49 56 57 64
E PR | AREA XJ XI1 X12 SF2 sF3| %

Column 1-8 - Decimal right justified unless punched.

E = Modulus of elasticity for bar member.
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Column 9-16 - Decimal right justified unless punched.

PR = Poisson's ratio for bar element.

Column 17-24 - Decimal right justified unless punched.

AREA = Cross sectional area of bar.

Column 25-32 - Decimal right justified unless punched.

XJ* = Bar member torsional constant.

*See Section B.4 for table of torsional constants

Column 33-40 - Decimal right justified unless punched.

XI1l = Moment of inertia about the Ym axis (Fig. 4-1).

Column 41-48 - Decimal right justified unless punched.

XI2 = Moment of inertia about the Z axis (Fig. 4-1).

Column 49-56 - Decimal right justified unless punched.

SF2* = Shear shape factor 2.

Column 57-64 - Decimal right justified unless punched.

SF3* = Shear shape factor 3.

* Shear shape factors for bending about the Y_ and Z_ axes
are given in Section 4. These factors, when multiplied by
the bar cross-section area, will yield effective shear
areas for the member. The permissible range of SF2 and
SF3 is:

.01 = SF2 of SF3 = 999.99

15b. Plate Element
Jl., J2, Jd3, ™, E, PR, AW, G (318, SF8.0)

1 89 16 17 24 25 32 33 40 41 48 49 56 57 64

Jl J2 J3 TP E PR AW G

Column 1-8 - Integer must be right justified

Jl = First node of plate (nodes must appear in
ascending order (i.e. J1 < J2 < J3)

Column 9-16 - Integer must be right justified

J2 = Second node of plate.
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16a.

Column 17-24 -~ Integer must be right justified

J3 = Third node of plate

Column 25-32 -~ Decimal right

justified unless punched

TP = Total thickness of plate

Column 33-40 - Decimal right

justified unless punched

E = Modulus of elasticity for face sheets

Column 41-48 - Decimal right

PR = Poisson's ratio

Column 49-56 - Decimal right

Core thickness in inches

Column 57-64 - Decimal right

Shear Modulus of core

Bar Element

justified unless punched

justified unless punched

justified unless punched

KEY (1), KBEY (2) . . . . KEY (8) (818)
1 8 9 16 17 24 25 32 33 40 41 48 49 56 57 64
KEY (1) |KEY (2) |KEY (3) | KEY (4) | KEY (5) |KEY (6) | KEY (7) | KEY (8) é
Column 1-8 - Integer must be right justified
KEY (1) = Selected integer from 1 to 8
Column 9-16 - Integer must be right justified
KEY (2) = Selected integer from 1 to 8
et cetera
The keys identify the independent parameters to be random.

For a bar element, the code is as follows:

1 Random modulus of elasticity

Random moment of inertia about the Y,
Random moment of inertia about the 2, axis

KEY =

KEY = 2 Random cross-sectional area
KEY = 3

KEY = 4

KEY = 5 Random Poisson's ratio

KEY = 6

the Y, axis

KEY = 7 Random shear shape factor for bending

the 2, axis

KEY = 8 Random bar member torsional constant

Random shear shape factor for bending

axis

about

about




Note: Keys do not have to be entered in sequence.
Example: Desire Random 1, 4 and 6

1 8 9 16 17 24 25
1 6 4 g

16b. Plate Element

KEY (1), KEY (2), . . . KEY (5) (518)
1 8 9 16 17 24 25 32 33 40
KEY (1) | KEY (2) | RKEY(3) | REY (4) | KEY (5) ‘"2

Column 1-8 - Integer must be right justified

KEY (1) - Selected integer from 1 to 5

et cetera

KEY = 1 Random shear modulus

KEY = 2 Random shear web cross-sectional area
KEY = 3 Random thickness of plate

KEY = 4 Random modulus of elasticity

KEY = 5 Random Poisson's ratio

Note: Keys do not have to be entered in sequence.
See example in lé6a.

17. KIN (18) (Only when JFLAG = 1 and partial derivatives
are entered into the program)
1 8
KIN 1

Column 1-8 -~ Integer must be right justified

KIN = Number of rows in the partial derivative matrix
to be entered
Note KIN may not exceed 189




19.

20.

A (I,J)

{(10¥Fg.0) Partial derivative matrix data

1 8 9 16 17 24 25 32 33 40 41 48 49 56 57 64 65 72 73 80

A(L,J)

7

Column 1-8

- Decimal point right justified unless punched

Note: Number of cards A(I,J) must equal KIN, J may not
exceed 9.

LKRS (18) (Only when JFLAG = 1)
1 8
LKRS ¢
Column 1-8 - Integer must be right justified
LKRS = Dimension of the selected KR and KS matrices

LKRS ma
KR (1018)
1 8 9

LKRS

|
k- LKRS

y not exceed 10

16 17

etc. %

Matrix with

All XR = KS
be
All KR = K&

row numbeyr for each element

(i.e. diagonal stiffness matrix elements) must

on the diagonal only
must be in off diagonal locations only




21.

KS (1018)

i

Matrix with column number for each element

The upper triangular section will determine which partial
derivatives will be computed.

Example
1 1 1 1 2 3
KR = 2 2 2 KS = 1 2 3
3 3 3 1 2 3

The partial derivatives for each row would be ordered in the
printout as follows:

0 , 3
8K‘KRu,l)”KS(l,l)) IK(KR(1,2)) (KS(1,2))

followed‘by 3/dm; for example

9+ 0 4, B3 , 9 , 9 , ¥ , B 4, 8 4 9
akll 3k12 3k13 3]{22 3k23 3k33 amll 8m22 am33




Section B.3 Data Card Seguence

—«— Sentinel to denote all
AM's & {x}'s entered

WO —&— Sentinel to denote end of mode
-1 selection
7
) Jz One set for each mode selected
L:f“ 4= Santinel to denote end of constraint
data
/ELAGS
» KBw | |

“ETE /2 One set for each node with constraints

Case I (JFLAG = 1)




- Sentinel
for no more
elements

Repeat for eac—ll’//———* Plate

element

One card for each node
18 cards (3 cards)

One card for each node (3 cards)

—e Sentinel to denote all A's &
{x}'s entered

—=— Sentinel to denote end of select data

One set for each mode selected
% Sentinel to denote end of constraint data

./2 One set for each node with constraints

Case IT (TFLAG = 0)
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